1,956 research outputs found

    Surface Roughness Dominated Pinning Mechanism of Magnetic Vortices in Soft Ferromagnetic Films

    Full text link
    Although pinning of domain walls in ferromagnets is ubiquitous, the absence of an appropriate characterization tool has limited the ability to correlate the physical and magnetic microstructures of ferromagnetic films with specific pinning mechanisms. Here, we show that the pinning of a magnetic vortex, the simplest possible domain structure in soft ferromagnets, is strongly correlated with surface roughness, and we make a quantitative comparison of the pinning energy and spatial range in films of various thickness. The results demonstrate that thickness fluctuations on the lateral length scale of the vortex core diameter, i.e. an effective roughness at a specific length scale, provides the dominant pinning mechanism. We argue that this mechanism will be important in virtually any soft ferromagnetic film.Comment: 4 figure

    Electrical Detection of Spin Accumulation at a Ferromagnet-Semiconductor Interface

    Full text link
    We show that the accumulation of spin-polarized electrons at a forward-biased Schottky tunnel barrier between Fe and n-GaAs can be detected electrically. The spin accumulation leads to an additional voltage drop across the barrier that is suppressed by a small transverse magnetic field, which depolarizes the spins in the semiconductor. The dependence of the electrical accumulation signal on magnetic field, bias current, and temperature is in good agreement with the predictions of a drift-diffusion model for spin-polarized transport.Comment: Submitted to Phys. Rev. Let

    Flow injection determination of readily assimilable nitrogen compounds during vinification

    Get PDF
    A flow injection method for the determination of readily assimilable nitrogen (r.a.n.), i.e. ammonium and aminated nitrogen, is reported. The difference in pH of the sample in the presence and absence of formaldehyde, which blocks the amino function, provides the value of r.a.n. by monitoring the changes in absorbance of bromothymol blue at 616 nm. The detection and quantification limits are 10 and 11.6 mg l-1, respectively; the reproducibility and repeatability are 3.94 mg l-1 and 1.35 mg l-1, respectively; and the sample throughput is 20 samples h-1. The method has been applied to the analysis of 120 samples of must and wine subjected to biological aging. The proposed method also provides good correlation with the reference method used in routine analysis, and it is faster and gives sufficient precision for wineries requirements

    Optical and electrical spin injection and spin transport in hybrid Fe/GaAs devices

    Full text link
    We discuss methods for imaging the nonequilibrium spin polarization of electrons in Fe/GaAs spin transport devices. Both optically- and electrically-injected spin distributions are studied by scanning magneto-optical Kerr rotation microscopy. Related methods are used to demonstrate electrical spin detection of optically-injected spin polarized currents. Dynamical properties of spin transport are inferred from studies based on the Hanle effect, and the influence of strain on spin transport data in these devices is discussed.Comment: 5 pages, 6 figs. ICPS-28 proceedings (July'06, Vienna) for J. Appl. Phy

    Hyperfine Interactions and Spin Transport in Ferromagnet-Semiconductor Heterostructures

    Full text link
    Measurements and modeling of electron spin transport and dynamics are used to characterize hyperfine interactions in Fe/GaAs devices with nn-GaAs channels. Ga and As nuclei are polarized by electrically injected electron spins, and the nuclear polarization is detected indirectly through the depolarization of electron spins in the hyperfine field. The dependence of the electron spin signal on injector bias and applied field direction is modeled by a coupled drift-diffusion equation, including effective fields from both the electronic and nuclear polarizations. This approach is used to determine the electron spin polarization independently of the assumptions made in standard transport measurements. The extreme sensitivity of the electron spin dynamics to the nuclear spin polarization also facilitates the electrical detection of nuclear magnetic resonance.Comment: Submitted to Phys. Rev.

    Spin Injection and Relaxation in Ferromagnet-Semiconductor Heterostructures

    Full text link
    We present a complete description of spin injection and detection in Fe/Al_xGa_{1-x}As/GaAs heterostructures for temperatures from 2 to 295 K. Measurements of the steady-state spin polarization in the semiconductor indicate three temperature regimes for spin transport and relaxation. At temperatures below 70 K, spin-polarized electrons injected into quantum well structures form excitons, and the spin polarization in the quantum well depends strongly on the electrical bias conditions. At intermediate temperatures, the spin polarization is determined primarily by the spin relaxation rate for free electrons in the quantum well. This process is slow relative to the excitonic spin relaxation rate at lower temperatures and is responsible for a broad maximum in the spin polarization between 100 and 200 K. The spin injection efficiency of the Fe/Al_xGa_{1-x}As Schottky barrier decreases at higher temperatures, although a steady-state spin polarization of at least 6 % is observed at 295 K.Comment: 3 Figures Submitted to Phys. Rev. Let
    • …
    corecore