4,571 research outputs found
Improving QC Relaxations of OPF Problems via Voltage Magnitude Difference Constraints and Envelopes for Trilinear Monomials
AC optimal power flow (AC~OPF) is a challenging non-convex optimization
problem that plays a crucial role in power system operation and control.
Recently developed convex relaxation techniques provide new insights regarding
the global optimality of AC~OPF solutions. The quadratic convex (QC) relaxation
is one promising approach that constructs convex envelopes around the
trigonometric and product terms in the polar representation of the power flow
equations. This paper proposes two methods for tightening the QC relaxation.
The first method introduces new variables that represent the voltage magnitude
differences between connected buses. Using "bound tightening" techniques, the
bounds on the voltage magnitude difference variables can be significantly
smaller than the bounds on the voltage magnitudes themselves, so constraints
based on voltage magnitude differences can tighten the relaxation. Second,
rather than a potentially weaker "nested McCormick" formulation, this paper
applies "Meyer and Floudas" envelopes that yield the convex hull of the
trilinear monomials formed by the product of the voltage magnitudes and
trignometric terms in the polar form of the power flow equations. Comparison to
a state-of-the-art QC implementation demonstrates the advantages of these
improvements via smaller optimality gaps.Comment: 8 pages, 1 figur
Effect of distortion on the buckling strength of stiffened panels
This paper predicts the behaviour of stiffened plates with different distortion levels in order to address a rational structural design procedure as pre-existing and fabricationrelated (like weld-induced) initial geometrical distortion is of great importance in structural design point of view. The considered range of scantlings, the distortion typesand levels were chosen, based on panels used at BVT Surface Fleet Ltd., where the type 45 destroyer were under construction. An analytical relation is presented based on Perry's column approach to establish the variation of buckling strength against the geometrical distortion. A parametric form of non linear finite element analysis using ABAQUS has been carried out under axial loading condition to predict the behaviour and the buckling strength. The effect of residual stress is not considered in this study. A new strength parameter is proposed to represent buckling strength which takes into account the inelastic post-buckling behaviour of the structure. The results from FE analysis are plotted in non-dimensional terms and arrived at some important conclusions
Developments in the clinical understanding of lupus
Advances in genetics and new understanding of the molecular pathways that mediate innate and adaptive immune system activation, along with renewed focus on the role of the complement system as a mediator of inflammation, have stimulated elaboration of a scheme that might explain key mechanisms in the pathogenesis of systemic lupus erythematosus. Clinical observations identifying important comorbidities in patients with lupus have been a recent focus of research linking immune mechanisms with clinical manifestations of disease. While these advances have identified rational and promising targets for therapy, so far the therapeutic trials of new biologic agents have not met their potential. Nonetheless, progress in understanding the underlying immunopathogenesis of lupus and its impact on clinical disease has accelerated the pace of clinical research to improve the outcomes of patients with systemic lupus erythematosus
Type I interferon in organ-targeted autoimmune and inflammatory diseases
A significant role for IFNα in the pathogenesis of systemic lupus erythematosus is well supported, and clinical trials of anti-IFNα monoclonal antibodies are in progress in this disease. In other autoimmune diseases characterized by substantial inflammation and tissue destruction, the role of type I interferons is less clear. Gene expression analysis of peripheral blood cells from patients with rheumatoid arthritis and multiple sclerosis demonstrate an interferon signature similar to but less intense than that seen in patients with lupus. In both of those diseases, presence of the interferon signature has been associated with more significant clinical manifestations. At the same time, evidence supports an anti-inflammatory and beneficial role of IFNβ locally in the joints of patients with rheumatoid arthritis and in murine arthritis models, and many patients with multiple sclerosis show a clinical response to recombinant IFNβ. As can also be proposed for type I diabetes mellitus, type I interferon appears to contribute to the development of autoimmunity and disease progression in multiple autoimmune diseases, while maintaining some capacity to control established disease - particularly at local sites of inflammation. Recent studies in both rheumatoid arthritis and multiple sclerosis suggest that quantification of type I interferon activity or target gene expression might be informative in predicting responses to distinct classes of therapeutic agents
A Fuzzy Logic Based Approach to Direct Load Control
Demand side management programs are strategies designed to alter the shape of the load curve. In order to successfully implement such a strategy, customer acceptance of the program is vital. It is thus desirable to design a model for direct load control which may accommodate customer preferences. This paper presents a methodology for optimizing both customer satisfaction and utility unit commitment savings, based on a fuzzy load model for the direct load control of appliance
A Fuzzy Based Load Model for Power System Direct Load Control
Demand side management programs are strategies designed to alter the shape of the load curve. In order to successfully implement such a strategy, customer acceptance of the program is vital. It is thus desirable to design a model for direct load control which may accommodate customer preferences. This paper presents a methodology for optimizing both customer satisfaction and utility unit commitment savings, based on a fuzzy load model for the direct load control of appliances
Phase Diagrams of Quasispecies Theory with Recombination and Horizontal Gene Transfer
We consider how transfer of genetic information between individuals
influences the phase diagram and mean fitness of both the Eigen and the
parallel, or Crow-Kimura, models of evolution. In the absence of genetic
transfer, these physical models of evolution consider the replication and point
mutation of the genomes of independent individuals in a large population. A
phase transition occurs, such that below a critical mutation rate an
identifiable quasispecies forms. We generalize these models of quasispecies
evolution to include horizontal gene transfer. We show how transfer of genetic
information changes the phase diagram and mean fitness and introduces
metastability in quasispecies theory, via an analytic field theoretic mapping.Comment: 5 pages, 1 figure, to appear in Physics Review Letter
The New Centurions
The current group of young people entering the workforce belong to the so-called millennial generation. Each generation has certain characteristics that have defined its interaction with the world; the millennials have been called the Net generation. They are the first generation that has never known life without the Internet. As a result of their protected, structured, and positively reinforced upbringing, the millennials are an exceptionally accomplished, positive, upbeat, and optimistic generation. The millennials are the quintessential multitaskers, and they are used to having the world at their fingertips through online search engines. If organizations use the best of the millennials\u27 traits and effectively embrace the less appealing ones, they will undoubtedly emerge stronger and more prepared for the future
- …