224 research outputs found

    On the structure pf genealogical trees in the presence of selection

    Full text link
    We investigate through numerical simulations the effect of selection on two summary statistics for nucleotide variation in a sample of two genes from a population of N asexually reproducing haploid individuals. One is the mean time since two individuals had their most recent common ancestor (Tsˉ\bar{T_s}), and the other is the mean number of nucleotide differences between two genes in the sample (dsˉ\bar{d_s}). In the case of diminishing epistasis, in which the deleterious effect of a new mutation is attenuated, we find that the scale of dsˉ\bar{d_s} with the population size depends on the mutation rate, leading then to the onset of a sharp threshold phenomenon as N becomes large.Comment: 6 page

    Does the Red Queen reign in the kingdom of digital organisms?

    Get PDF
    In competition experiments between two RNA viruses of equal or almost equal fitness, often both strains gain in fitness before one eventually excludes the other. This observation has been linked to the Red Queen effect, which describes a situation in which organisms have to constantly adapt just to keep their status quo. I carried out experiments with digital organisms (self-replicating computer programs) in order to clarify how the competing strains' location in fitness space influences the Red-Queen effect. I found that gains in fitness during competition were prevalent for organisms that were taken from the base of a fitness peak, but absent or rare for organisms that were taken from the top of a peak or from a considerable distance away from the nearest peak. In the latter two cases, either neutral drift and loss of the fittest mutants or the waiting time to the first beneficial mutation were more important factors. Moreover, I found that the Red-Queen dynamic in general led to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure

    Uncertainty analysis in environmental radioactivity measurements using the Monte Carlo code MCNP5

    Full text link
    High Purity Germanium (HPGe) detectors are widely used for environmental radioactivity measurements due to their excellent energy resolution. Monte Carlo (MC) codes are a useful tool to complement experimental measurements in calibration procedures at the laboratory. However, the efficiency curve of the detector can vary due to uncertainties associated with measurements. These uncertainties can be classified into some categories: geometrical parameters of the measurement (distance source-detector, volume of the source), properties of the radiation source (radionuclide activity, branching ratio), and detector characteristics (Ge dead layer, active volume, end cap thickness). The Monte Carlo simulation can be also affected by other kind of uncertainties mainly related to cross sections and to the calculation itself. Normally, all these uncertainties are not well known and it is required a deep analysis to determine their effect on the detector efficiency. In this work, the Noether-Wilks formula is used to carry out the uncertainty analysis. A Probability Density Function (PDF) is assigned to each variable involved in the sampling process. The size of the sampling is determined from the characteristics of the tolerance intervals by applying the Noether Wilks formula. Results of the analysis transform the efficiency curve into a region of possible values into the tolerance intervals. Results show a good agreement between experimental measurements and simulations for two different matrices (water and sand).Gallardo Bermell, S.; Querol Vives, A.; Ortiz MoragĂłn, J.; RĂłdenas Diago, J.; VerdĂş MartĂ­n, GJ.; Villanueva LĂłpez, JF. (2015). Uncertainty analysis in environmental radioactivity measurements using the Monte Carlo code MCNP5. Radiation Physics and Chemistry. 116:214-218. doi:10.1016/j.radphyschem.2015.05.023S21421811

    Inferring Deleterious-Mutation Parameters in Natural Daphnia Populations

    Get PDF
    Deng and Lynch (1, 2) proposed to characterize deleterious genomic mutations from changes in the mean and genetic variance of fitness traits upon selfing in outcrossing populations. Such observations can be readily acquired in cyclical parthenogens. Selfing and life-table experiments were performed for two such Daphnia populations. A significant inbreeding depression and an increase of genetic variance for all traits analyzed were observed. Deng and Lynch's (2) procedures were employed to estimate the genomic mutation rate (U), mean dominance coefficient ( [Image: see text] ), mean selection coefficient ( [Image: see text] ), and scaled genomic mutational variance ( [Image: see text] ). On average, [Image: see text] , [Image: see text] , [Image: see text] and [Image: see text] (^ indicates an estimate) are 0.84, 0.30, 0.14 and 4.6E-4 respectively. For the true values, the [Image: see text] and [Image: see text] are lower bounds, and [Image: see text] and [Image: see text] upper bounds

    Commitment versus persuasion in the three-party constrained voter model

    Get PDF
    In the framework of the three-party constrained voter model, where voters of two radical parties (A and B) interact with "centrists" (C and Cz), we study the competition between a persuasive majority and a committed minority. In this model, A's and B's are incompatible voters that can convince centrists or be swayed by them. Here, radical voters are more persuasive than centrists, whose sub-population consists of susceptible agents C and a fraction zeta of centrist zealots Cz. Whereas C's may adopt the opinions A and B with respective rates 1+delta_A and 1+delta_B (with delta_A>=delta_B>0), Cz's are committed individuals that always remain centrists. Furthermore, A and B voters can become (susceptible) centrists C with a rate 1. The resulting competition between commitment and persuasion is studied in the mean field limit and for a finite population on a complete graph. At mean field level, there is a continuous transition from a coexistence phase when zeta= Delta_c. In a finite population of size N, demographic fluctuations lead to centrism consensus and the dynamics is characterized by the mean consensus time tau. Because of the competition between commitment and persuasion, here consensus is reached much slower (zeta=Delta_c) than in the absence of zealots (when tau\simN). In fact, when zeta<Delta_c and there is an initial minority of centrists, the mean consensus time asymptotically grows as tau\simN^{-1/2} e^{N gamma}, where gamma is determined. The dynamics is thus characterized by a metastable state where the most persuasive voters and centrists coexist when delta_A>delta_B, whereas all species coexist when delta_A=delta_B. When zeta>=Delta_c and the initial density of centrists is low, one finds tau\simln N (when N>>1). Our analytical findings are corroborated by stochastic simulations.Comment: 25 pages, 6 figures. Final version for the Journal of Statistical Physics (special issue on the "applications of statistical mechanics to social phenomena"
    • …
    corecore