224 research outputs found
On the structure pf genealogical trees in the presence of selection
We investigate through numerical simulations the effect of selection on two
summary statistics for nucleotide variation in a sample of two genes from a
population of N asexually reproducing haploid individuals. One is the mean time
since two individuals had their most recent common ancestor (), and
the other is the mean number of nucleotide differences between two genes in the
sample (). In the case of diminishing epistasis, in which the
deleterious effect of a new mutation is attenuated, we find that the scale of
with the population size depends on the mutation rate, leading then
to the onset of a sharp threshold phenomenon as N becomes large.Comment: 6 page
Does the Red Queen reign in the kingdom of digital organisms?
In competition experiments between two RNA viruses of equal or almost equal
fitness, often both strains gain in fitness before one eventually excludes the
other. This observation has been linked to the Red Queen effect, which
describes a situation in which organisms have to constantly adapt just to keep
their status quo. I carried out experiments with digital organisms
(self-replicating computer programs) in order to clarify how the competing
strains' location in fitness space influences the Red-Queen effect. I found
that gains in fitness during competition were prevalent for organisms that were
taken from the base of a fitness peak, but absent or rare for organisms that
were taken from the top of a peak or from a considerable distance away from the
nearest peak. In the latter two cases, either neutral drift and loss of the
fittest mutants or the waiting time to the first beneficial mutation were more
important factors. Moreover, I found that the Red-Queen dynamic in general led
to faster exclusion than the other two mechanisms.Comment: 10 pages, 5 eps figure
Uncertainty analysis in environmental radioactivity measurements using the Monte Carlo code MCNP5
High Purity Germanium (HPGe) detectors are widely used for environmental radioactivity measurements due to their excellent energy resolution. Monte Carlo (MC) codes are a useful tool to complement experimental measurements in calibration procedures at the laboratory. However, the efficiency curve of the detector can vary due to uncertainties associated with measurements. These uncertainties can be classified into some categories: geometrical parameters of the measurement (distance source-detector, volume of the source), properties of the radiation source (radionuclide activity, branching ratio), and detector characteristics (Ge dead layer, active volume, end cap thickness). The Monte Carlo simulation can be also affected by other kind of uncertainties mainly related to cross sections and to the calculation itself. Normally, all these uncertainties are not well known and it is required a deep analysis to determine their effect on the detector efficiency. In this work, the Noether-Wilks formula is used to carry out the uncertainty analysis. A Probability Density Function (PDF) is assigned to each variable involved in the sampling process. The size of the sampling is determined from the characteristics of the tolerance intervals by applying the Noether Wilks formula. Results of the analysis transform the efficiency curve into a region of possible values into the tolerance intervals. Results show a good agreement between experimental measurements and simulations for two different matrices (water and sand).Gallardo Bermell, S.; Querol Vives, A.; Ortiz MoragĂłn, J.; RĂłdenas Diago, J.; VerdĂş MartĂn, GJ.; Villanueva LĂłpez, JF. (2015). Uncertainty analysis in environmental radioactivity measurements using the Monte Carlo code MCNP5. Radiation Physics and Chemistry. 116:214-218. doi:10.1016/j.radphyschem.2015.05.023S21421811
Inferring Deleterious-Mutation Parameters in Natural Daphnia Populations
Deng and Lynch (1, 2) proposed to characterize deleterious genomic mutations from changes in the mean and genetic variance of fitness traits upon selfing in outcrossing populations. Such observations can be readily acquired in cyclical parthenogens. Selfing and life-table experiments were performed for two such Daphnia populations. A significant inbreeding depression and an increase of genetic variance for all traits analyzed were observed. Deng and Lynch's (2) procedures were employed to estimate the genomic mutation rate (U), mean dominance coefficient ( [Image: see text] ), mean selection coefficient ( [Image: see text] ), and scaled genomic mutational variance ( [Image: see text] ). On average, [Image: see text] , [Image: see text] , [Image: see text] and [Image: see text] (^ indicates an estimate) are 0.84, 0.30, 0.14 and 4.6E-4 respectively. For the true values, the [Image: see text] and [Image: see text] are lower bounds, and [Image: see text] and [Image: see text] upper bounds
Commitment versus persuasion in the three-party constrained voter model
In the framework of the three-party constrained voter model, where voters of
two radical parties (A and B) interact with "centrists" (C and Cz), we study
the competition between a persuasive majority and a committed minority. In this
model, A's and B's are incompatible voters that can convince centrists or be
swayed by them. Here, radical voters are more persuasive than centrists, whose
sub-population consists of susceptible agents C and a fraction zeta of centrist
zealots Cz. Whereas C's may adopt the opinions A and B with respective rates
1+delta_A and 1+delta_B (with delta_A>=delta_B>0), Cz's are committed
individuals that always remain centrists. Furthermore, A and B voters can
become (susceptible) centrists C with a rate 1. The resulting competition
between commitment and persuasion is studied in the mean field limit and for a
finite population on a complete graph. At mean field level, there is a
continuous transition from a coexistence phase when
zeta=
Delta_c. In a finite population of size N, demographic fluctuations lead to
centrism consensus and the dynamics is characterized by the mean consensus time
tau. Because of the competition between commitment and persuasion, here
consensus is reached much slower (zeta=Delta_c) than
in the absence of zealots (when tau\simN). In fact, when zeta<Delta_c and there
is an initial minority of centrists, the mean consensus time asymptotically
grows as tau\simN^{-1/2} e^{N gamma}, where gamma is determined. The dynamics
is thus characterized by a metastable state where the most persuasive voters
and centrists coexist when delta_A>delta_B, whereas all species coexist when
delta_A=delta_B. When zeta>=Delta_c and the initial density of centrists is
low, one finds tau\simln N (when N>>1). Our analytical findings are
corroborated by stochastic simulations.Comment: 25 pages, 6 figures. Final version for the Journal of Statistical
Physics (special issue on the "applications of statistical mechanics to
social phenomena"
- …