5 research outputs found

    Using chemical fractionation and speciation to describe uptake of technetium, iodine and selenium by Agrostis capillaris and Lolium perenne

    Get PDF
    © 2019 Elsevier Ltd To understand the dynamic mechanisms governing soil-to-plant transfer of selenium (Se), technetium-99 (99Tc) and iodine (I), a pot experiment was undertaken using 30 contrasting soils after spiking with 77Se, 99Tc and 129I, and incubating for 2.5 years. Two grass species (Agrostis capillaris and Lolium perenne) were grown under controlled conditions for 4 months with 3 cuts at approximately monthly intervals. Native (soil-derived) 78Se and127I, as well as spiked 77Se, 99Tc and 129I, were assayed in soil and plants by ICP-MS. The grasses exhibited similar behaviour with respect to uptake of all three elements. The greatest uptake observed was for 99Tc, followed by 77Se, with least uptake of 129I, reflecting the transformations and interactions with soil of the three isotopes. Unlike soil-derived Se and I, the available pools of 77Se, 99Tc and 129I were substantially depleted by plant uptake across the three cuts with lower concentrations observed in plant tissues in each subsequent cut. Comparison between total plant offtake and various soil species suggested that 77SeO42−, 99TcO4− and 129IO3−, in soluble and adsorbed fractions were the most likely plant-available species. A greater ratio of 127I/129I in the soil solid phase compared to the solution phase confirmed incomplete mixing of spiked 129I with native 127I in the soil, despite the extended incubation period, leading to poor buffering of the spiked available pools. Compared to traditional expressions of soil-plant transfer factor (TFtotal), a transfer factor (TFavailable) expressed using volumetric concentrations of speciated ‘available’ fractions of each element showed little variation with soil properties

    Zinc solubility and fractionation in cultivated calcareous soils irrigated with wastewater

    No full text
    © 2015 Elsevier B.V. The solubility, lability and fractionation of zinc in a range of calcareous soils from Peshawar, Pakistan were studied (18 topsoils and 18 subsoils). The lability (E-value) of Zn was assessed as the fraction isotopically exchangeable with 70Zn2+; comparative extractions included 0.005M DTPA, 0.43M HNO3 and a Tessier-style sequential extraction procedure (SEP). Because of the extremely low concentration of labile Zn the E-value was determined in soils suspended in 0.0001M Na2-EDTA which provided reliable analytical conditions in which approximately 20% of the labile Zn was dissolved. On average, only 2.4% of soil Zn was isotopically exchangeable. This corresponded closely to Zn solubilised by extraction with 0.005 DTPA and by the carbonate extraction step (F1+F2) of the Tessier-style SEP. Crucially, although the majority of the soil CaCO3 was dissolved in F2 of the SEP, the DTPA dissolved only a very small proportion of the soil CaCO3. This suggests a superficial carbonate-bound form of labile Zn, accessible to extraction with DTPA and to isotopic exchange. Zinc solubility from soil suspended in 0.01M Ca(NO3)2 (PCO2 controlled at 0.03) was measured over three days. Following solution speciation using WHAM(VII) two simple solubility models were parameterised: a pH dependent 'adsorption' model based on the labile (isotopically exchangeable) Zn distribution coefficient (Kd) and an apparent solubility product (Ks) for ZnCO3. The distribution coefficient showed no pH-dependence and the solubility model provided the best fit to the free ion activity (Zn2+) data, although the apparent value of log10 Ks (5.1) was 2.8log units lower than that of the mineral smithsonite (ZnCO3)

    Radioactivity in terrestrial ecosystems

    No full text
    corecore