64 research outputs found

    Expanding the Realm of Microlensing Surveys with Difference Image Photometry

    Get PDF
    We present a new technique for monitoring microlensing activity even in highly crowded fields, and use this technique to place limits on low-mass MACHOs in the haloes of M31 and the Galaxy. Unlike present Galactic microlensing surveys, we employ a technique in which a large fraction of the stellar sample is compressed into a single CCD field, rather than spread out in a way requiring many different telescope pointings. We implement the suggestion by Crotts (1992) that crowded fields can be monitored by searching for changes in flux of variable objects by subtracting images of the same field, taken in time sequence, positionally registered, photometrically normalized, then subtracted from one another (or a sequence average). The present work tackles the most difficult part of this task, the adjustment of the point spread function among images in the sequence so that seeing variations play an insignificant role in determining the residual after subtraction. The interesting signal following this process consists of positive and negative point sources due to variable sources. The measurement of changes in flux determined in this way we dub "difference image photometry" (also called "pixel lensing" [Gould 1996]). - The matching of the image point spread function (PSF) is accomplished by a division of PSFs in Fourier space to produce a convolution kernel, in a manner explored for other reasons by Phillips & Davis (1995). In practice, we find the application of this method is difficult in a typical telescope and wide field imaging camera due to a subtle interplay between the spatial variation of the PSF associated with the optical design and the inevitable time variability of the telescope focus. Such effects lead to complexities...(abstract continues)Comment: Astronomical Journal, in press (accepted 10 Jul 1996), 49 pages, Latex 4 requires .sty files, 12 figure

    The Size and Nature of Lyman alpha Forest Clouds Probed by QSO Pairs and Groups

    Full text link
    We describe a robust Bayesian statistical method for determining Lyman alpha forest cloud sizes in spherical and in thin disk geometries, using absorption in adjacent sightlines toward closely separated QSO pairs and groups, apply this method to the available data, and discuss implications of our results for models of Ly alpha clouds. Under the assumption of a population of uniform- size and unclustered clouds, the data from Q1343+2640A/B give a 99% confidence lower and upper bounds 61<R<533 kpc/h on the radius of spherical clouds at z about 1.8, with a median value of 149 kpc/h [(Ω0,Λ0)=(1,0)(\Omega_0, \Lambda_0) =(1,0)]. The baryonic mass of such large clouds is comparable to that of dwarf irregular galaxies. Their cosmic overdensity is close to the turn-around density but generally below the virialization density, suggesting a population of gravi- tationally bound but unvirialized protogalactic objects at z about 2. Their comoving volume density is similar to that of the faint blue galaxies (FBGs) at the limiting magnitude B of 26-27. The dynamical collapsing timescale of over- densities like these clouds is also comparable with the cosmic time difference between z of 2 to 1. Both populations of objects show similar weak clustering in space. All this evidence suggests a possible identification of Ly alpha clouds as the collapsing progenitors of the FBGs at z about 1. We also investigate the other QSO pairs: Q0307-1931/1932, Q0107-0232/0235, and the triplet of Q1623+268. Imposing an uniform W_0 > 0.4 A threshold on all linelists, we find a trend of larger inferred cloud radius with larger proper separation of QSO pairs, significant at the 3.4 sigma level. This indicates that the idealization of unclustered, uniform-sized clouds does not accurately describe the Ly alpha cloud population.Comment: Astrophysical Journal accepted; 28 pages of uuencoded gzip compressed postscript file (including 8 figures). Also see the uncompressed postscript file at http://www.astro.columbia.edu/~fang

    Constraints on the Abundance of Highly Ionized Proto-Cluster Regions from the Absence of Large Voids in the Lyman Alpha Forest

    Full text link
    Energetic feedback processes during the formation of galaxy clusters may have heated and ionized a large fraction of the intergalactic gas in proto-cluster regions. When such a highly ionized hot ``super-bubble'' falls along the sightline to a background quasar, it would be seen as a large void, with little or no absorption, in the Lyman alpha forest. We examine the spectra of 137 quasars in the Sloan Digital Sky Survey, to search for such voids, and find no clear evidence of their existence. The size distribution of voids in the range 5-70 Angstrom (corresponding to physical sizes of approximately 3-35 comoving Mpc/h) is consistent with the standard model for the Lyman alpha forest without additional hot bubbles. We adapt a physical model for HII bubble growth during cosmological reionization (Furlanetto, Zaldarriaga and Hernquist 2004), to describe the expected size-distribution of hot super-bubbles at redshift around z = 3. This model incorporates the conjoining of bubbles around individual neighboring galaxies. Using the non-detection of voids, we find that models in which the volume filling factor of hot bubbles exceeds approximately 20 percent at z=3 can be ruled out, primarily because they overproduce the number of large (40-50 Angstrom) voids. We conclude that any pre-heating mechanism that explains galaxy cluster observations must avoid heating the low-density gas in the proto-cluster regions, either by operating relatively recently (z<3) or by depositing entropy in the high-density regions.Comment: submitted to ApJ, 9 emulateapj pages with 3 figure
    • …
    corecore