17,497 research outputs found

    Numerical bifurcation diagram for the two-dimensional boundary-fed chlorine-dioxideā€“iodineā€“malonic-acid system

    Get PDF
    We present a numerical solution of the chlorine-dioxideā€“iodineā€“malonic-acid reaction-diffusion system in two dimensions in a boundary-fed system using a realistic model. The bifurcation diagram for the transition from nonsymmetry-breaking structures along boundary feed gradients to transverse symmetry-breaking patterns in a single layer is numerically determined. We find this transition to be discontinuous. We make a connection with earlier results and discuss prospects for future work

    Pattern formation with trapped ions

    Get PDF
    Ion traps are a versatile tool to study nonequilibrium statistical physics, due to the tunability of dissipation and nonlinearity. We propose an experiment with a chain of trapped ions, where dissipation is provided by laser heating and cooling, while nonlinearity is provided by trap anharmonicity and beam shaping. The collective dynamics are governed by an equation similar to the complex Ginzburg-Landau equation, except that the reactive nature of the coupling leads to qualitatively different behavior. The system has the unusual feature of being both oscillatory and excitable at the same time. We account for noise from spontaneous emission and find that the patterns are observable for realistic experimental parameters. Our scheme also allows controllable experiments with noise and quenched disorder.Comment: 4 pages + appendi

    Modeling a falling slinky

    Full text link
    A slinky is an example of a tension spring: in an unstretched state a slinky is collapsed, with turns touching, and a finite tension is required to separate the turns from this state. If a slinky is suspended from its top and stretched under gravity and then released, the bottom of the slinky does not begin to fall until the top section of the slinky, which collapses turn by turn from the top, collides with the bottom. The total collapse time t_c (typically ~0.3 s for real slinkies) corresponds to the time required for a wave front to propagate down the slinky to communicate the release of the top end. We present a modification to an existing model for a falling tension spring (Calkin 1993) and apply it to data from filmed drops of two real slinkies. The modification of the model is the inclusion of a finite time for collapse of the turns of the slinky behind the collapse front propagating down the slinky during the fall. The new finite-collapse time model achieves a good qualitative fit to the observed positions of the top of the real slinkies during the measured drops. The spring constant k for each slinky is taken to be a free parameter in the model. The best-fit model values for k for each slinky are approximately consistent with values obtained from measured periods of oscillation of the slinkies.Comment: 30 pages, 11 figure

    Domain Coarsening in Systems Far from Equilibrium

    Get PDF
    The growth of domains of stripes evolving from random initial conditions is studied in numerical simulations of models of systems far from equilibrium such as Rayleigh-Benard convection. The scaling of the size of the domains deduced from the inverse width of the Fourier spectrum is studied for both potential and nonpotential models. The morphology of the domains and the defect structures are however quite different in the two cases, and evidence is presented for a second length scale in the nonpotential case.Comment: 11 pages, RevTeX; 3 uufiles encoded postscript figures appende

    Defect Dynamics for Spiral Chaos in Rayleigh-Benard Convection

    Full text link
    A theory of the novel spiral chaos state recently observed in Rayleigh-Benard convection is proposed in terms of the importance of invasive defects i.e defects that through their intrinsic dynamics expand to take over the system. The motion of the spiral defects is shown to be dominated by wave vector frustration, rather than a rotational motion driven by a vertical vorticity field. This leads to a continuum of spiral frequencies, and a spiral may rotate in either sense depending on the wave vector of its local environment. Results of extensive numerical work on equations modelling the convection system provide some confirmation of these ideas.Comment: Revtex (15 pages) with 4 encoded Postscript figures appende

    Pupil participation in Scottish schools: how far have we come?

    Get PDF
    The United Nations Convention on the Rights of the Child (UN, 1989), which applies to all children under the age of 18, established the overarching principles guiding pupil participation. In most European states, signatories to the Convention have enacted policies to promote the voice of the child or young person in decisions that affect them. In education systems strategies to enhance the pupil participation are an increasing feature of deliberation on education for citizenship, curriculum flexibility, pedagogical approaches and assessment for learning. Despite the positive policy context and professional commitment to principles of inclusion, translating policy intentions so that the spirit of the legislation is played out in the day-to-day experiences of pupils is a constant challenge. This article reports on research that examines how pupil participation is understood and enacted in Scottish schools. It considers how the over-laying of diverse policies presents mixed messages to practitioners

    Weakly Nonlinear Analysis of Electroconvection in a Suspended Fluid Film

    Full text link
    It has been experimentally observed that weakly conducting suspended films of smectic liquid crystals undergo electroconvection when subjected to a large enough potential difference. The resulting counter-rotating vortices form a very simple convection pattern and exhibit a variety of interesting nonlinear effects. The linear stability problem for this system has recently been solved. The convection mechanism, which involves charge separation at the free surfaces of the film, is applicable to any sufficiently two-dimensional fluid. In this paper, we derive an amplitude equation which describes the weakly nonlinear regime, by starting from the basic electrohydrodynamic equations. This regime has been the subject of several recent experimental studies. The lowest order amplitude equation we derive is of the Ginzburg-Landau form, and describes a forward bifurcation as is observed experimentally. The coefficients of the amplitude equation are calculated and compared with the values independently deduced from the linear stability calculation.Comment: 26 pages, 2 included eps figures, submitted to Phys Rev E. For more information, see http://mobydick.physics.utoronto.c

    Finite Size Scaling of Domain Chaos

    Get PDF
    Numerical studies of the domain chaos state in a model of rotating Rayleigh-Benard convection suggest that finite size effects may account for the discrepancy between experimentally measured values of the correlation length and the predicted divergence near onset
    • ā€¦
    corecore