91 research outputs found
Epigenetic programming by maternal nutrition: shaping future generations
Within the Western world’s aging and increasingly overweight population, we are seeing an increasing prevalence of adult-onset, lifestyle-related disease such as diabetes, hypertension and atherosclerosis. There is significant evidence that suboptimal nutrition in pregnancy can lead to an increased risk of these diseases developing in offspring, and that this increased risk can be heritable. Thus, poor in utero nutrition may be a major contributor to the current cycle of obesity. While the molecular basis of this phenomenon is unknown, available evidence suggests that it can be mediated by epigenetic changes to gene expression. Here, we discuss epigenetics as a mediator of disease risk in response to nutritional cues. The potential for maternal nutrition to heritably alter epigenetic states may have implications for population health and adaptive evolution
A Sustained Dietary Change Increases Epigenetic Variation in Isogenic Mice
Epigenetic changes can be induced by adverse environmental exposures, such as
nutritional imbalance, but little is known about the nature or extent of these
changes. Here we have explored the epigenomic effects of a sustained nutritional
change, excess dietary methyl donors, by assessing genomic CpG methylation
patterns in isogenic mice exposed for one or six generations. We find stochastic
variation in methylation levels at many loci; exposure to methyl donors
increases the magnitude of this variation and the number of variable loci.
Several gene ontology categories are significantly overrepresented in genes
proximal to these methylation-variable loci, suggesting that certain pathways
are susceptible to environmental influence on their epigenetic states. Long-term
exposure to the diet (six generations) results in a larger number of loci
exhibiting epigenetic variability, suggesting that some of the induced changes
are heritable. This finding presents the possibility that epigenetic variation
within populations can be induced by environmental change, providing a vehicle
for disease predisposition and possibly a substrate for natural selection
The impact of employee level and work stress on mental health and GP service use: an analysis of a sample of Australian government employees
BACKGROUND: This study sought to identify the extent to which employee level and work stressors were associated with mental health problems experienced by Australian government employees, and with their use of primary care services. METHODS: 806 government employees aged between 40 and 44 years were surveyed as part of an epidemiological study conducted in Australia. Data collected from participants included sociodemographic attributes, physical health, psychological measures and work stressors relating to job control, job demands, job security and skills discretion at work. For 88% of these participants, information on visits made to general practitioners (GPs) for the six months before and after their survey interview was obtained from health insurance records. RESULTS: When work stress and personal factors were taken into account, men at more junior levels reported better mental health, more positive affect and used fewer GP services. Women at middle-management levels obtained less GP care than their more senior counterparts. Both men and women who reported higher levels of work stress were found to have poorer mental health and well-being. The impact of such stressors on GP service use, however, differed for men and women. CONCLUSION: Measures of work stress and not employee level affect the mental health and well-being of government employees. For governments with responsibility for funding health care services, reducing work stress experienced by their own employees offers potential benefits by improving the health of their workforce and reducing outlays for such services
The human Piwi protein Hiwi2 associates with tRNA-derived piRNAs in somatic cells
The Piwi-piRNA pathway is active in animal germ cells where its functions are required for germ cell maintenance and gamete differentiation. Piwi proteins and piRNAs have been detected outside germline tissue in multiple phyla, but activity of the pathway in mammalian somatic cells has been little explored. In particular, Piwi expression has been observed in cancer cells, but nothing is known about the piRNA partners or the function of the system in these cells. We have surveyed the expression of the three human Piwi genes, Hiwi, Hili and Hiwi2, in multiple normal tissues and cancer cell lines. We find that Hiwi2 is ubiquitously expressed; in cancer cells the protein is largely restricted to the cytoplasm and is associated with translating ribosomes. Immunoprecipitation of Hiwi2 from MDAMB231 cancer cells enriches for piRNAs that are predominantly derived from processed tRNAs and expressed genes, species which can also be found in adult human testis. Our studies indicate that a Piwi-piRNA pathway is present in human somatic cells, with an uncharacterised function linked to translation. Taking this evidence together with evidence from primitive organisms, we propose that this somatic function of the pathway predates the germline functions of the pathway in modern animals. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research
The Relationship of DNA Methylation with Age, Gender and Genotype in Twins and Healthy Controls
Cytosine-5 methylation within CpG dinucleotides is a potentially important mechanism of epigenetic influence on human traits and disease. In addition to influences of age and gender, genetic control of DNA methylation levels has recently been described. We used whole blood genomic DNA in a twin set (23 MZ twin-pairs and 23 DZ twin-pairs, N = 92) as well as healthy controls (N = 96) to investigate heritability and relationship with age and gender of selected DNA methylation profiles using readily commercially available GoldenGate bead array technology. Despite the inability to detect meaningful methylation differences in the majority of CpG loci due to tissue type and locus selection issues, we found replicable significant associations of DNA methylation with age and gender. We identified associations of genetically heritable single nucleotide polymorphisms with large differences in DNA methylation levels near the polymorphism (cis effects) as well as associations with much smaller differences in DNA methylation levels elsewhere in the human genome (trans effects). Our results demonstrate the feasibility of array-based approaches in studies of DNA methylation and highlight the vast differences between individual loci. The identification of CpG loci of which DNA methylation levels are under genetic control or are related to age or gender will facilitate further studies into the role of DNA methylation and disease
A Method to Quantify Mouse Coat-Color Proportions
Coat-color proportions and patterns in mice are used as assays for many processes such as transgene expression, chimerism, and epigenetics. In many studies, coat-color readouts are estimated from subjective scoring of individual mice. Here we show a method by which mouse coat color is quantified as the proportion of coat shown in one or more digital images. We use the yellow-agouti mouse model of epigenetic variegation to demonstrate this method. We apply this method to live mice using a conventional digital camera for data collection. We use a raster graphics editing program to convert agouti regions of the coat to a standard, uniform, brown color and the yellow regions of the coat to a standard, uniform, yellow color. We use a second program to quantify the proportions of these standard colors. This method provides quantification that relates directly to the visual appearance of the live animal. It also provides an objective analysis with a traceable record, and it should allow for precise comparisons of mouse coats and mouse cohorts within and between studies
A Statistical Design for Testing Transgenerational Genomic Imprinting in Natural Human Populations
Genomic imprinting is a phenomenon in which the same allele is expressed differently, depending on its parental origin. Such a phenomenon, also called the parent-of-origin effect, has been recognized to play a pivotal role in embryological development and pathogenesis in many species. Here we propose a statistical design for detecting imprinted loci that control quantitative traits based on a random set of three-generation families from a natural population in humans. This design provides a pathway for characterizing the effects of imprinted genes on a complex trait or disease at different generations and testing transgenerational changes of imprinted effects. The design is integrated with population and cytogenetic principles of gene segregation and transmission from a previous generation to next. The implementation of the EM algorithm within the design framework leads to the estimation of genetic parameters that define imprinted effects. A simulation study is used to investigate the statistical properties of the model and validate its utilization. This new design, coupled with increasingly used genome-wide association studies, should have an immediate implication for studying the genetic architecture of complex traits in humans
Altered orbitofrontal sulcogyral patterns in gambling disorder: a multicenter study
Gambling disorder is a serious psychiatric condition characterized by decision-making and reward processing
impairments that are associated with dysfunctional brain activity in the orbitofrontal cortex (OFC). However, it remains
unclear whether OFC functional abnormalities in gambling disorder are accompanied by structural abnormalities. We
addressed this question by examining the organization of sulci and gyri in the OFC. This organization is in place very
early and stable across life, such that OFC sulcogyral patterns (classified into Types I, II, and III) can be regarded as
potential pre-morbid markers of pathological conditions. We gathered structural brain data from nine existing studies,
reaching a total of 165 individuals with gambling disorder and 159 healthy controls. Our results, supported by both
frequentist and Bayesian statistics, show that the distribution of OFC sulcogyral patterns is skewed in individuals with
gambling disorder, with an increased prevalence of Type II pattern compared with healthy controls. Examination of
gambling severity did not reveal any significant relationship between OFC sulcogyral patterns and disease severity.
Altogether, our results provide evidence for a skewed distribution of OFC sulcogyral patterns in gambling disorder and
suggest that pattern Type II might represent a pre-morbid structural brain marker of the disease. It will be important to
investigate more closely the functional implications of these structural abnormalities in future work.Y.L. was supported by the National Natural Science Foundation of China (Grant
No. 31600929) and the Fundamental Research Funds for the Central
Universities (010914380002). G.S. was supported by a Veni grant from the
Netherlands Organization for Scientific Research (Grant No. 016.155.218). J.J.
was supported by the Academy of Finland (Grant No. 295580), the Finnish
Medical Foundation, and the Finnish Foundation for Alcohol Studies. V.K. was
supported by the Academy of Finland (Grant No. 256836) and the Finnish
Foundation for Alcohol Studies. S.G. and H.R.S. were supported by the Danish
Council for Independent Research in Social Sciences through a grant to
Thomas Ramsøy (“Decision Neuroscience Project”; Grant No. 0601-01361B) and
by the Lundbeck Foundation through a Grant of Excellence (“ContAct”; Grant
No. R59 A5399). A.G. was supported by Deutsche Forschungsgemeinschaft
(DFG) HE2597/15–1, HE2597/15–2, and DFG Graduiertenkolleg 1589/2 “Sensory
Computation in Neural Systems”. N.R.-S. was supported by a research grant by
the Senatsverwaltung für Gesundheit und Soziales, Berlin, Germany (Grant No.
002–2008/I B 35). C.M.R.d.L. and J.C.P. were supported by a grant from the
Spanish Government (Ministerio de Economía y Competitividad, Secretaría de
Estado de Investigación, Desarrollo e Innovación; Convocatoria 2017 de
Proyectos I+D de Excelencia, Spain; co-funded by the Fondo Europeo de
Desarrollo Regional, FEDER, European Union; Grant No. PSI2017–85488-P). J.-C.
D. was supported by “LABEX ANR-11-LABEX-0042” of Université de Lyon within
the program Investissements d’Avenir (ANR-11-IDEX-007) operated by the
French National Research Agency and by a grant from the Fondation pour la
Recherche Médicale (Grant No. DPA20140629796)
Distinct DNA methylation epigenotypes in bladder cancer from different Chinese sub-populations and its implication in cancer detection using voided urine
<p>Abstract</p> <p>Background</p> <p>Bladder cancer is the sixth most common cancer in the world and the incidence is particularly high in southwestern Taiwan. Previous studies have identified several tumor-related genes that are hypermethylated in bladder cancer; however the DNA methylation profile of bladder cancer in Taiwan is not fully understood.</p> <p>Methods</p> <p>In this study, we compared the DNA methylation profile of multiple tumor suppressor genes (<it>APC</it>, <it>DAPK</it>, <it>E-cadherin</it>, <it>hMLH1</it>, <it>IRF8</it>, <it>p14</it>, <it>p15</it>, <it>RASSF1A</it>, <it>SFRP1 </it>and <it>SOCS-1</it>) in bladder cancer patients from different Chinese sub-populations including Taiwan (104 cases), Hong Kong (82 cases) and China (24 cases) by MSP. Two normal human urothelium were also included as control. To investigate the diagnostic potential of using DNA methylation in non-invasive detection of bladder cancer, degree of methylation of <it>DAPK</it>, <it>IRF8</it>, <it>p14</it>, <it>RASSF1A </it>and <it>SFRP1 </it>was also accessed by quantitative MSP in urine samples from thirty bladder cancer patients and nineteen non-cancer controls.</p> <p>Results</p> <p>There were distinct DNA methylation epigenotypes among the different sub-populations. Further, samples from Taiwan and China demonstrated a bimodal distribution suggesting that CpG island methylator phentotype (CIMP) is presented in bladder cancer. Moreover, the number of methylated genes in samples from Taiwan and Hong Kong were significantly correlated with histological grade (P < 0.01) and pathological stage (P < 0.01). Regarding the samples from Taiwan, methylation of <it>SFRP1</it>, <it>IRF8</it>, <it>APC </it>and <it>RASSF1A </it>were significantly associated with increased tumor grade, stage. Methylation of <it>RASSF1A </it>was associated with tumor recurrence. Patients with methylation of <it>APC </it>or <it>RASSF1A </it>were also significantly associated with shorter recurrence-free survival. For methylation detection in voided urine samples of cancer patients, the sensitivity and specificity of using any of the methylated genes (<it>IRF8</it>, <it>p14 </it>or <it>sFRP1</it>) by qMSP was 86.7% and 94.7%.</p> <p>Conclusions</p> <p>Our results indicate that there are distinct methylation epigenotypes among different Chinese sub-populations. These profiles demonstrate gradual increases with cancer progression. Finally, detection of gene methylation in voided urine with these distinct DNA methylation markers is more sensitive than urine cytology.</p
Environmental chemical stressors as epigenome modifiers:a new horizon in assessment of toxicological effects
In eukaryotic cells, chromatin transformation from euchromatin into heterochromatin as a means of controlling gene expression and replication has been known as the ?accessibility hypothesis?. The interplay of epigenetic changes including histone modifications, DNA methylation, RNA interference (RNAi) and other functional epigenetic components are intricate. It is believed that these changes are well-programmed, inherited and can be modified by environmental contaminant stressors. Environmentally-driven epigenetic alterations during development, e.g. embryonic, foetal or neonatal stage, may influence disease susceptibility in adulthood. Therefore, understanding how epigenome modifications develop in response to environmental chemicals and, how epigenetic-xenobiotic interactions influence human health will shed new insights into gene-environment interactions in the epidemiology of several diseases including cancer. In this review, we consider studies of chemical modifiers including nutritional and xenobiotic effects on epigenetic components in vitro or in vivo. By examining the most-studied epigenome modifications and how their respective roles are interlinked, we highlight the central role of xenbiotic-modified epigenetic mechanisms. A major requirement will be to study and understand effects following environmentally-relevant exposures. We suggest that the study of epigenetic toxicology will open up new opportunities to devise strategies for the prevention or treatment of at-risk populations
- …