199 research outputs found
Bleomycin increases neutrophil adhesion to human vascular endothelial cells independently of upregulation of ICAM-1 and E-selectin
© 2016 Taylor & Francis. Aim of the Study: Bleomycin-induced lung disease is a serious complication of therapy characterized by alveolar injury, cytokine release, inflammatory cell recruitment, and eventually pulmonary fibrosis. The mechanisms underlying bleomycin-induced pulmonary fibrosis may be relevant to other progressive scarring diseases of the lungs. Pulmonary vascular endothelial cells are critically involved in immune cell extravasation at sites of injury through adhesion molecule expression and cytokine release. We sought to determine the effects of bleomycin on adhesion molecule expression and cytokine release by pulmonary vascular endothelial cells, and their functional relevance to inflammatory cell recruitment. Materials and Methods: The effects of pharmacologically relevant concentrations of bleomycin on adhesion molecule expression and cytokine release by human vascular endothelial cells in vitro were studied by flow cytometry, quantitative polymerase chain reaction, and enzyme-linked immunosorbent assay. A flow chamber model was used to assess the functional consequences on adhesion of flowing human neutrophils to endothelial cell monolayers. Results: Bleomycin increased intercellular adhesion molecule 1 (ICAM-1; CD54), vascular cell adhesion molecule (VCAM-1; CD106), and E-selectin (CD62E) expression, and increased monocyte chemoattractant protein (MCP-1) and interleukin (IL-8) release by endothelial cells. Increases in protein expression were accompanied by increased mRNA transcription. In contrast, there was no direct effect of bleomycin on the profibrotic cytokines transforming growth factor-beta (TGF-β), platelet-derived growth factor-BB (PDGF-BB), or endothelin-1. Under flow conditions, endothelial cells exposed to bleomycin supported increased neutrophil adhesion which was independent of ICAM-1 or E-selectin. Conclusion: Our findings demonstrate that bleomycin promotes endothelial-mediated inflammation and neutrophil adhesion. These mechanisms may contribute to the development of pulmonary fibrosis by supporting immune cell recruitment in the lungs
Investigating the diagnostic utility of high-resolution oesophageal manometry in patients with refractory respiratory symptoms
Background: The interaction between the respiratory and gastrointestinal systems, and the role of the latter in the development of respiratory pathology, has been examined with a focus on gastro-oesophageal reflux disease (GORD). However, little data exists examining the link between oesophageal motility and respiratory disease. Aims and objectives: In this study, we examined patterns in oesophageal motility using high-resolution oesophageal manometry (HROM) in patients with refractory respiratory symptoms. Methods: Data were collected retrospectively for all patients that were investigated using HROM at a single centre for refractory respiratory symptoms between January 1st, 2011–December 1st, 2021. Patients were selected for investigation based on airway reflux symptoms, measured by the Hull Airways Reflux Questionnaire (HARQ). Results: 441 patients were investigated with HROM (64% female, mean age = 56.5 [SD = 13.9]). The commonest diagnoses of these patients were Chronic Cough (77%, n = 339), Asthma (10%, n = 44), and Interstitial Lung Disease (7%, n = 29). The prevalence of oesophageal dysmotility was 66% in our cohort. Those with oesophageal dysmotility had significantly higher HARQ scores than those with normal motility (40.6 vs 35.3, p < 0.001) and there was a significant inverse correlation between HARQ scores and distal contractile integral (DCI), a measure of oesophageal contractility. Conclusions: Two-thirds of patients with refractory respiratory symptoms were found to have oesophageal dysmotility on HROM. These findings suggest motility disorders of the oesophagus may contribute to the development and progression of respiratory disease. This study highlights the need for further prospective study of the relationship between oesophageal dysmotility and respiratory disease
Density fluctuations and the structure of a nonuniform hard sphere fluid
We derive an exact equation for density changes induced by a general external
field that corrects the hydrostatic approximation where the local value of the
field is adsorbed into a modified chemical potential. Using linear response
theory to relate density changes self-consistently in different regions of
space, we arrive at an integral equation for a hard sphere fluid that is exact
in the limit of a slowly varying field or at low density and reduces to the
accurate Percus-Yevick equation for a hard core field. This and related
equations give accurate results for a wide variety of fields
Permeable, Non-irritating Prodrugs of Nonsteroidal and Steroidal Agents
Prodrugs containing an active drug molecule linked to a polyethylene glycol group, and a method of use thereof are described. Exemplary soluble ester prodrugs contain naproxen, triamcinolone acetonide, gancyclovir, taxol, cyclosporin, dideoxyinosine, trihydroxy steroids, and flurbiprofen molecules linked to polyethylene glycol (PEG) groups. Pharmaceutical compositions containing these prodrugs, and a method of using these esters for treating disease states or symptoms are also described
Improving asthma care through implementation of the SENTINEL programme: findings from the pilot site
Aim: Short-acting β2-agonist (SABA) overuse adversely impacts asthma-related outcomes and the environment. The SABA rEductioN Through ImplemeNting Hull asthma guidELines (SENTINEL) programme aims to reduce SABA overuse through supported implementation of an adult asthma guideline, which advocates for a SABA-free maintenance and reliever therapy (MART)-preferred treatment where appropriate, across six primary care networks (PCNs) in the UK. We present findings on patient/disease characteristics, asthma prescribing patterns and exacerbation rates from the pilot PCN. Methods: Patients (aged ⩾18 years, prescribed at least one inhaled therapy) and their prescribed asthma treatments were characterised using National Health Service data. Asthma treatments and exacerbations were analysed for three periods: 24‒12 months pre-, 12 months pre-and 12 months post-SENTINEL implementation (November 2020‒January 2021). Results: Of the 2571 registered asthma patients, 33.6% (n=864) underwent an asthma review, of whom 44.7% (n=386) were transitioned to MART. Fewer patients were prescribed three or more SABA canisters per year post-implementation in the overall asthma population (45.4% and 46.2% during 24‒12 months and 12 months pre-implementation, respectively, and 23.9% 12 months post-implementation), and in the two subgroups: 1) those who had an asthma review (74.5% and 83.6% during 24‒12 months and 12 months pre-implementation, respectively, and 26.5% post-implementation); and 2) those transitioned to MART following a review (76.4% and 86.5% during 24‒12 months and 12 months pre-implementation, respectively, and 16.3% post-implementation). A higher proportion of patients were exacerbation-free post-implementation in the overall asthma population and in the two subgroups. At least 71.5% of patients transitioned to MART were still prescribed MART 12 months post-implementation, of whom ⩾86.7% were SABA-free. Conclusion: SENTINEL implementation led to reduced SABA prescribing, increased inhaled corticosteroid uptake and fewer asthma exacerbations. MART was considered appropriate for ∼50% of reviewed patients, with improved prescribing patterns sustained post-implementation
Environmental Sustainability in Respiratory Care: An Overview of the healthCARe-Based envirONmental Cost of Treatment (CARBON) Programme
Introduction: Faced with the challenges of climate change, countries are seeking to decarbonise their economies. A greater understanding of what comprises the carbon footprint of care in healthcare systems will identify potential strategies for reduction of greenhouse gas (GHG) emissions. In respiratory care, the focus has been on preventer inhalers, thereby omitting contributions from other aspects such as healthcare resource utilisation (HCRU) and reliever inhaler use. The healthCARe-Based envirONmental cost of treatment (CARBON) programme aims to provide a broader understanding of the carbon footprint associated with respiratory care. Methods: CARBON will quantify the carbon footprint of medications and HCRU among approximately 2.5 million patients with respiratory diseases from seven ongoing studies spanning more than 40 countries. Across studies, to obtain the carbon footprint of all inhaled, oral, and injectable medications, SimaPro life cycle assessment software modelling resource and energy consumption data, in addition to Ecoinvent® data sets and certified published studies, will be used. The carbon footprint of HCRU in the United Kingdom will be estimated by applying the methodology and data obtained from the Sustainable Healthcare Coalition Care Pathway Guidance. Planned Outcomes: In asthma, CARBON studies will quantify GHG emissions associated with well-controlled versus not well-controlled asthma, the contribution of short-acting β2-agonist (SABA) reliever inhalers (and their potential overuse) to the carbon footprint of care, and how implementation of treatment guidelines can drive improved outcomes and footprint reduction. In chronic obstructive pulmonary disease (COPD), CARBON studies will assess the impact of exacerbation history on GHG emissions associated with HCRU and SABA use in subsequent years and estimate the carbon footprint associated with all aspects of COPD care. Conclusion: CARBON aims to show that the principle of evidence-led care focused on improvement of clinical outcomes has the potential to benefit patients and the environment
Uncertainty in United States coastal wetland greenhouse gas inventorying
© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Research Letters 13 (2018): 115005, doi:10.1088/1748-9326/aae157.Coastal wetlands store carbon dioxide (CO2) and emit CO2 and methane (CH4) making them an important part of greenhouse gas (GHG) inventorying. In the contiguous United States (CONUS), a coastal wetland inventory was recently calculated by combining maps of wetland type and change with soil, biomass, and CH4 flux data from a literature review. We assess uncertainty in this developing carbon monitoring system to quantify confidence in the inventory process itself and to prioritize future research. We provide a value-added analysis by defining types and scales of uncertainty for assumptions, burial and emissions datasets, and wetland maps, simulating 10 000 iterations of a simplified version of the inventory, and performing a sensitivity analysis. Coastal wetlands were likely a source of net-CO2-equivalent (CO2e) emissions from 2006–2011. Although stable estuarine wetlands were likely a CO2e sink, this effect was counteracted by catastrophic soil losses in the Gulf Coast, and CH4 emissions from tidal freshwater wetlands. The direction and magnitude of total CONUS CO2e flux were most sensitive to uncertainty in emissions and burial data, and assumptions about how to calculate the inventory. Critical data uncertainties included CH4 emissions for stable freshwater wetlands and carbon burial rates for all coastal wetlands. Critical assumptions included the average depth of soil affected by erosion events, the method used to convert CH4 fluxes to CO2e, and the fraction of carbon lost to the atmosphere following an erosion event. The inventory was relatively insensitive to mapping uncertainties. Future versions could be improved by collecting additional data, especially the depth affected by loss events, and by better mapping salinity and inundation gradients relevant to key GHG fluxes. Social Media Abstract: US coastal wetlands were a recent and uncertain source of greenhouse gasses because of CH4 and erosion.Financial
support was provided primarily by NASA Carbon
Monitoring Systems (NNH14AY67I) and the USGS
Land Carbon Program, with additional support from
The Smithsonian Institution, The Coastal Carbon
Research Coordination Network (DEB-1655622), and
NOAA Grant: NA16NMF4630103
Canvass: a crowd-sourced, natural-product screening library for exploring biological space
NCATS thanks Dingyin Tao for assistance with compound characterization. This research was supported by the Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH). R.B.A. acknowledges support from NSF (CHE-1665145) and NIH (GM126221). M.K.B. acknowledges support from NIH (5R01GM110131). N.Z.B. thanks support from NIGMS, NIH (R01GM114061). J.K.C. acknowledges support from NSF (CHE-1665331). J.C. acknowledges support from the Fogarty International Center, NIH (TW009872). P.A.C. acknowledges support from the National Cancer Institute (NCI), NIH (R01 CA158275), and the NIH/National Institute of Aging (P01 AG012411). N.K.G. acknowledges support from NSF (CHE-1464898). B.C.G. thanks the support of NSF (RUI: 213569), the Camille and Henry Dreyfus Foundation, and the Arnold and Mabel Beckman Foundation. C.C.H. thanks the start-up funds from the Scripps Institution of Oceanography for support. J.N.J. acknowledges support from NIH (GM 063557, GM 084333). A.D.K. thanks the support from NCI, NIH (P01CA125066). D.G.I.K. acknowledges support from the National Center for Complementary and Integrative Health (1 R01 AT008088) and the Fogarty International Center, NIH (U01 TW00313), and gratefully acknowledges courtesies extended by the Government of Madagascar (Ministere des Eaux et Forets). O.K. thanks NIH (R01GM071779) for financial support. T.J.M. acknowledges support from NIH (GM116952). S.M. acknowledges support from NIH (DA045884-01, DA046487-01, AA026949-01), the Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program (W81XWH-17-1-0256), and NCI, NIH, through a Cancer Center Support Grant (P30 CA008748). K.N.M. thanks the California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board for support. B.T.M. thanks Michael Mullowney for his contribution in the isolation, elucidation, and submission of the compounds in this work. P.N. acknowledges support from NIH (R01 GM111476). L.E.O. acknowledges support from NIH (R01-HL25854, R01-GM30859, R0-1-NS-12389). L.E.B., J.K.S., and J.A.P. thank the NIH (R35 GM-118173, R24 GM-111625) for research support. F.R. thanks the American Lebanese Syrian Associated Charities (ALSAC) for financial support. I.S. thanks the University of Oklahoma Startup funds for support. J.T.S. acknowledges support from ACS PRF (53767-ND1) and NSF (CHE-1414298), and thanks Drs. Kellan N. Lamb and Michael J. Di Maso for their synthetic contribution. B.S. acknowledges support from NIH (CA78747, CA106150, GM114353, GM115575). W.S. acknowledges support from NIGMS, NIH (R15GM116032, P30 GM103450), and thanks the University of Arkansas for startup funds and the Arkansas Biosciences Institute (ABI) for seed money. C.R.J.S. acknowledges support from NIH (R01GM121656). D.S.T. thanks the support of NIH (T32 CA062948-Gudas) and PhRMA Foundation to A.L.V., NIH (P41 GM076267) to D.S.T., and CCSG NIH (P30 CA008748) to C.B. Thompson. R.E.T. acknowledges support from NIGMS, NIH (GM129465). R.J.T. thanks the American Cancer Society (RSG-12-253-01-CDD) and NSF (CHE1361173) for support. D.A.V. thanks the Camille and Henry Dreyfus Foundation, the National Science Foundation (CHE-0353662, CHE-1005253, and CHE-1725142), the Beckman Foundation, the Sherman Fairchild Foundation, the John Stauffer Charitable Trust, and the Christian Scholars Foundation for support. J.W. acknowledges support from the American Cancer Society through the Research Scholar Grant (RSG-13-011-01-CDD). W.M.W.acknowledges support from NIGMS, NIH (GM119426), and NSF (CHE1755698). A.Z. acknowledges support from NSF (CHE-1463819). (Intramural Research Program of the National Center for Advancing Translational Sciences, National Institutes of Health (NIH); CHE-1665145 - NSF; CHE-1665331 - NSF; CHE-1464898 - NSF; RUI: 213569 - NSF; CHE-1414298 - NSF; CHE1361173 - NSF; CHE1755698 - NSF; CHE-1463819 - NSF; GM126221 - NIH; 5R01GM110131 - NIH; GM 063557 - NIH; GM 084333 - NIH; R01GM071779 - NIH; GM116952 - NIH; DA045884-01 - NIH; DA046487-01 - NIH; AA026949-01 - NIH; R01 GM111476 - NIH; R01-HL25854 - NIH; R01-GM30859 - NIH; R0-1-NS-12389 - NIH; R35 GM-118173 - NIH; R24 GM-111625 - NIH; CA78747 - NIH; CA106150 - NIH; GM114353 - NIH; GM115575 - NIH; R01GM121656 - NIH; T32 CA062948-Gudas - NIH; P41 GM076267 - NIH; R01GM114061 - NIGMS, NIH; R15GM116032 - NIGMS, NIH; P30 GM103450 - NIGMS, NIH; GM129465 - NIGMS, NIH; GM119426 - NIGMS, NIH; TW009872 - Fogarty International Center, NIH; U01 TW00313 - Fogarty International Center, NIH; R01 CA158275 - National Cancer Institute (NCI), NIH; P01 AG012411 - NIH/National Institute of Aging; Camille and Henry Dreyfus Foundation; Arnold and Mabel Beckman Foundation; Scripps Institution of Oceanography; P01CA125066 - NCI, NIH; 1 R01 AT008088 - National Center for Complementary and Integrative Health; W81XWH-17-1-0256 - Office of the Assistant Secretary of Defense for Health Affairs through the Peer Reviewed Medical Research Program; P30 CA008748 - NCI, NIH, through a Cancer Center Support Grant; California Department of Food and Agriculture Pierce's Disease and Glassy Winged Sharpshooter Board; American Lebanese Syrian Associated Charities (ALSAC); University of Oklahoma Startup funds; 53767-ND1 - ACS PRF; PhRMA Foundation; P30 CA008748 - CCSG NIH; RSG-12-253-01-CDD - American Cancer Society; RSG-13-011-01-CDD - American Cancer Society; CHE-0353662 - National Science Foundation; CHE-1005253 - National Science Foundation; CHE-1725142 - National Science Foundation; Beckman Foundation; Sherman Fairchild Foundation; John Stauffer Charitable Trust; Christian Scholars Foundation)Published versionSupporting documentatio
Upper limits on the strength of periodic gravitational waves from PSR J1939+2134
The first science run of the LIGO and GEO gravitational wave detectors
presented the opportunity to test methods of searching for gravitational waves
from known pulsars. Here we present new direct upper limits on the strength of
waves from the pulsar PSR J1939+2134 using two independent analysis methods,
one in the frequency domain using frequentist statistics and one in the time
domain using Bayesian inference. Both methods show that the strain amplitude at
Earth from this pulsar is less than a few times .Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo
Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July
200
- …