149 research outputs found

    Feasibility of a storage ring for polar molecules in strong-field-seeking states

    Full text link
    We show, through modeling and simulation, that it is feasible to construct a storage ring that will store dense bunches of strong-field-seeking polar molecules at 30 m/s (kinetic energy of 2K) and hold them, for several minutes, against losses due to defocusing, oscillations, and diffusion. The ring, 3 m in diameter, has straight sections that afford access to the stored molecules and a lattice structure that may be adapted for evaporative cooling. Simulation is done using a newly-developed code that tracks the particles, in time, through 400 turns; it accounts for longitudinal velocity changes as a function of external electric field, focusing and deflection nonlinearities, and the effects of gravity. An injector, decelerator, and source are included and intensities are calculated.Comment: 6 pages 5 figures, 3 table

    Understanding Governance Dynamics: The Governing System of Spatial Data Infrastructures

    Get PDF
    The importance and influence of spatial data has risen in all kinds of governmental and non-governmental processes, giving spatial data infrastructures (SDIs) a key role in spatial data sharing and dissemination. SDIs are nowadays challenged by new technologies and user demands. Proper SDI governance seems essential, but it is unclear to what extent current SDI governing systems are fully equipped to deal with the dynamics and complexity of SDIs. This research proposes a governing system framework for analysing the governing system of SDIs, adapted from the concepts of Kooiman. This framework is applied to two Dutch SDI cases: the Risk Map and the New Map of the Netherlands. With the help of the framework, the strong and weak aspects of the governing system of SDIs become more apparent and insights emerge on which interactions, images, instruments, actions and structures enable or constrain SDI governance. By observing changes in governing systems over time, SDI governance dynamics become visible. The governing system framework brings a new perspective to SDIs and SDI theory and is a potentially useful analytical tool for SDI governors

    Efficient Stark deceleration of cold polar molecules

    Full text link
    Stark deceleration has been utilized for slowing and trapping several species of neutral, ground-state polar molecules generated in a supersonic beam expansion. Due to the finite physical dimension of the electrode array and practical limitations of the applicable electric fields, only molecules within a specific range of velocities and positions can be efficiently slowed and trapped. These constraints result in a restricted phase space acceptance of the decelerator in directions both transverse and parallel to the molecular beam axis; hence, careful modeling is required for understanding and achieving efficient Stark decelerator operation. We present work on slowing of the hydroxyl radical (OH) elucidating the physics controlling the evolution of the molecular phase space packets both with experimental results and model calculations. From these results we deduce experimental conditions necessary for efficient operation of a Stark decelerator.Comment: 8 pages, 9 figure

    A capacity assessment framework for the fit-for-purpose land administration systems: the use of unmanned aerial vehicle (UAV) in Rwanda and Kenya

    Get PDF
    This article presents a novel capacity assessment framework, coined as Fit-For-Purpose capacity assessment framework (FCAF), to measure the capacity of the land administration system compliant with the Fit-For-Purpose approach. The framework incorporates legal, political, operational, social, technical, and technological capacity conditions and provides a holistic view of the capacity development pathways. The FCAF is designed by merging six capacity dimensions, namely regulations, political system, operational unit, social norms, land recording techniques, and software. FCAF systematically identifies context-specific, enabling and impeding capacity components and thus provides a basis to develop the necessary capacity development strategies and interventions. Specifically, FCAF can serve as a useful heuristic for the development of the capacity development strategies for the adaptation and sustainability of the geospatial technologies in land administration systems. In the article, by assessing the capacity needs for the adaptation of unmanned aerial vehicle (UAV) technology in Rwandese and Kenyan land administration systems, the efficacy of the FCAF is tested. The findings suggest that in Rwanda, capacity conditions are more supportive of an easier uptake of UAV. Nonetheless, weak market conditions and strict regulations concerning UAV call for attention. In Kenya, existing institutional and political challenges in the land administration system raise concerns about the reliability and attainability of UAV under the current framework conditions. Despite that, there are more supportive market conditions in Kenya in comparison to Rwanda and multiple non-governmental and private actors that can bolster the adaptation process into a more sustainable and scalable land administration system. The politics and administration of institutional chang

    Superfluid toroidal currents in atomic condensates

    Get PDF
    The dynamics of toroidal condensates in the presence of condensate flow and dipole perturbation have been investigated. The Bogoliubov spectrum of condensate is calculated for an oblate torus using a discrete-variable representation and a spectral method to high accuracy. The transition from spheroidal to toroidal geometry of the trap displaces the energy levels into narrow bands. The lowest-order acoustic modes are quantized with the dispersion relation Ï‰âˆŒâˆŁmâˆŁÏ‰s\omega \sim |m| \omega_s with m=0,±1,±2,...m=0,\pm 1,\pm 2, .... A condensate with toroidal current Îș\kappa splits the ∣m∣|m| co-rotating and counter-rotating pair by the amount: ΔE≈2∣m∣ℏ2Îș<r−2>\Delta E \approx 2 |m|\hbar^2 \kappa < r^{-2}>. Radial dipole excitations are the lowest energy dissipation modes. For highly occupied condensates the nonlinearity creates an asymmetric mix of dipole circulation and nonlinear shifts in the spectrum of excitations so that the center of mass circulates around the axis of symmetry of the trap. We outline an experimental method to study these excitations.Comment: 8 pages, 8 figure

    A Storage Ring for Neutral Atoms

    Get PDF
    We have demonstrated a storage ring for ultra-cold neutral atoms. Atoms with mean velocities of 1 m/s corresponding to kinetic energies of ~100 neV are confined to a 2 cm diameter ring by magnetic forces produced by two current-carrying wires. Up to 10^6 atoms are loaded at a time in the ring, and 7 revolutions are clearly observed. Additionally, we have demonstrated multiple loading of the ring and deterministic manipulation of the longitudinal velocity distribution of the atoms using applied laser pulses. Applications of this ring include large area atom interferometers and cw monochromatic atomic beam generation.Comment: 4 pages, 5 figure

    OSSOS XXV: Large Populations and Scattering-Sticking in the Distant Transneptunian Resonances

    Full text link
    There have been 77 TNOs discovered to be librating in the distant transneptunian resonances (beyond the 2:1 resonance, at semimajor axes greater than 47.7~AU) in four well-characterized surveys: the Outer Solar System Origins Survey (OSSOS) and three similar prior surveys. Here we use the OSSOS Survey Simulator to measure their intrinsic orbital distributions using an empirical parameterized model. Because many of the resonances had only one or very few detections, jj:kk resonant objects were grouped by kk in order to have a better basis for comparison between models and reality. We also use the Survey Simulator to constrain their absolute populations, finding that they are much larger than predicted by any published Neptune migration model to date; we also find population ratios that are inconsistent with published models, presenting a challenge for future Kuiper Belt emplacement models. The estimated population ratios between these resonances are largely consistent with scattering-sticking predictions, though further discoveries of resonant TNOs with high-precision orbits will be needed to determine whether scattering-sticking can explain the entire distant resonant population or not.Comment: Accepted for publication in Planetary Sciences Journal (PSJ

    Microwave traps for cold polar molecules

    Full text link
    We discuss the possibility of trapping polar molecules in the standing-wave electromagnetic field of a microwave resonant cavity. Such a trap has several novel features that make it very attractive for the development of ultracold molecule sources. Using commonly available technologies, microwave traps can be built with large depth (up to several Kelvin) and acceptance volume (up to several cm^3), suitable for efficient loading with currently available sources of cold polar molecules. Unlike most previous traps for molecules, this technology can be used to confine the strong-field seeking absolute ground state of the molecule, in a free-space maximum of the microwave electric field. Such ground state molecules should be immune to inelastic collisional losses. We calculate elastic collision cross-sections for the trapped molecules, due to the electrical polarization of the molecules at the trap center, and find that they are extraordinarily large. Thus, molecules in a microwave trap should be very amenable to sympathetic and/or evaporative cooling. The combination of these properties seems to open a clear path to producing large samples of polar molecules at temperatures much lower than has been possible previously.Comment: 10 pages, 3 figure

    Ground state and elementary excitations of single and binary Bose-Einstein condensates of trapped dipolar gases

    Full text link
    We analyze the ground-state properties and the excitation spectrum of Bose-Einstein condensates of trapped dipolar particles. First, we consider the case of a single-component polarized dipolar gas. For this case we discuss the influence of the trapping geometry on the stability of the condensate as well as the effects of the dipole-dipole interaction on the excitation spectrum. We discuss also the ground state and excitations of a gas composed of two antiparallel dipolar components.Comment: 12 pages, 9 eps figures, final versio
    • 

    corecore