903 research outputs found

    ANTIQUE: A Non-Factoid Question Answering Benchmark

    Full text link
    Considering the widespread use of mobile and voice search, answer passage retrieval for non-factoid questions plays a critical role in modern information retrieval systems. Despite the importance of the task, the community still feels the significant lack of large-scale non-factoid question answering collections with real questions and comprehensive relevance judgments. In this paper, we develop and release a collection of 2,626 open-domain non-factoid questions from a diverse set of categories. The dataset, called ANTIQUE, contains 34,011 manual relevance annotations. The questions were asked by real users in a community question answering service, i.e., Yahoo! Answers. Relevance judgments for all the answers to each question were collected through crowdsourcing. To facilitate further research, we also include a brief analysis of the data as well as baseline results on both classical and recently developed neural IR models

    Target Type Identification for Entity-Bearing Queries

    Full text link
    Identifying the target types of entity-bearing queries can help improve retrieval performance as well as the overall search experience. In this work, we address the problem of automatically detecting the target types of a query with respect to a type taxonomy. We propose a supervised learning approach with a rich variety of features. Using a purpose-built test collection, we show that our approach outperforms existing methods by a remarkable margin. This is an extended version of the article published with the same title in the Proceedings of SIGIR'17.Comment: Extended version of SIGIR'17 short paper, 5 page

    Target Apps Selection: Towards a Unified Search Framework for Mobile Devices

    Full text link
    With the recent growth of conversational systems and intelligent assistants such as Apple Siri and Google Assistant, mobile devices are becoming even more pervasive in our lives. As a consequence, users are getting engaged with the mobile apps and frequently search for an information need in their apps. However, users cannot search within their apps through their intelligent assistants. This requires a unified mobile search framework that identifies the target app(s) for the user's query, submits the query to the app(s), and presents the results to the user. In this paper, we take the first step forward towards developing unified mobile search. In more detail, we introduce and study the task of target apps selection, which has various potential real-world applications. To this aim, we analyze attributes of search queries as well as user behaviors, while searching with different mobile apps. The analyses are done based on thousands of queries that we collected through crowdsourcing. We finally study the performance of state-of-the-art retrieval models for this task and propose two simple yet effective neural models that significantly outperform the baselines. Our neural approaches are based on learning high-dimensional representations for mobile apps. Our analyses and experiments suggest specific future directions in this research area.Comment: To appear at SIGIR 201

    Learning a Deep Listwise Context Model for Ranking Refinement

    Full text link
    Learning to rank has been intensively studied and widely applied in information retrieval. Typically, a global ranking function is learned from a set of labeled data, which can achieve good performance on average but may be suboptimal for individual queries by ignoring the fact that relevant documents for different queries may have different distributions in the feature space. Inspired by the idea of pseudo relevance feedback where top ranked documents, which we refer as the \textit{local ranking context}, can provide important information about the query's characteristics, we propose to use the inherent feature distributions of the top results to learn a Deep Listwise Context Model that helps us fine tune the initial ranked list. Specifically, we employ a recurrent neural network to sequentially encode the top results using their feature vectors, learn a local context model and use it to re-rank the top results. There are three merits with our model: (1) Our model can capture the local ranking context based on the complex interactions between top results using a deep neural network; (2) Our model can be built upon existing learning-to-rank methods by directly using their extracted feature vectors; (3) Our model is trained with an attention-based loss function, which is more effective and efficient than many existing listwise methods. Experimental results show that the proposed model can significantly improve the state-of-the-art learning to rank methods on benchmark retrieval corpora

    Diversifying query suggestions based on query documents

    Full text link
    Many domain-specific search tasks are initiated by document-length queries, e.g., patent invalidity search aims to find prior art related to a new (query) patent. We call this type of search Query Document Search. In this type of search, the initial query docu-ment is typically long and contains diverse aspects (or sub-topics). Users tend to issue many queries based on the initial document to retrieve relevant documents. To help users in this situation, we propose a method to suggest diverse queries that can cover multi-ple aspects of the query document. We first identify multiple que-ry aspects and then provide diverse query suggestions that are effective for retrieving relevant documents as well being related to more query aspects. In the experiments, we demonstrate that our approach is effective in comparison to previous query suggestion methods
    • …
    corecore