2,553 research outputs found
Interaction between Faraday rotation and Cotton-Mouton effects in polarimetry modeling for NSTX
The evolution of electromagnetic wave polarization is modeled for propagation
in the major radial direction in the National Spherical Torus Experiment (NSTX)
with retroreflection from the center stack of the vacuum vessel. This modeling
illustrates that the Cotton-Mouton effect-elliptization due to the magnetic
field perpendicular to the propagation direction-is shown to be strongly
weighted to the high-field region of the plasma. An interaction between the
Faraday rotation and Cotton-Mouton effects is also clearly identified.
Elliptization occurs when the wave polarization direction is neither parallel
nor perpendicular to the local transverse magnetic field. Since Faraday
rotation modifies the polarization direction during propagation, it must also
affect the resultant elliptization. The Cotton-Mouton effect also intrinsically
results in rotation of the polarization direction, but this effect is less
significant in the plasma conditions modeled. The interaction increases at
longer wavelength, and complicates interpretation of polarimetry measurements.Comment: Contributed paper published as part of the Proceedings of the 18th
Topical Conference on High-Temperature Plasma Diagnostics, Wildwood, New
Jersey, May, 201
First-Order Reversal Curves of the Magnetostructural Phase Transition in FeTe
We apply the first-order reversal curve (FORC) method, borrowed from studies
of ferromagnetic materials, to the magneto-structural phase transition of FeTe.
FORC measurements reveal two features in the hysteretic phase transition, even
in samples where traditional temperature measurements display only a single
transition. For Fe1.13Te, the influence of magnetic field suggests that the
main feature is primarily structural while a smaller, slightly
higher-temperature transition is magnetic in origin. By contrast Fe1.03Te has a
single transition which shows a uniform response to magnetic field, indicating
a stronger coupling of the magnetic and structural phase transitions. We also
introduce uniaxial stress, which spreads the distribution width without
changing the underlying energy barrier of the transformation. The work shows
how FORC can help disentangle the roles of the magnetic and structural phase
transitions in FeTe.Comment: 8 page
Hydrodynamic Coupling of Two Brownian Spheres to a Planar Surface
We describe direct imaging measurements of the collective and relative
diffusion of two colloidal spheres near a flat plate. The bounding surface
modifies the spheres' dynamics, even at separations of tens of radii. This
behavior is captured by a stokeslet analysis of fluid flow driven by the
spheres' and wall's no-slip boundary conditions. In particular, this analysis
reveals surprising asymmetry in the normal modes for pair diffusion near a flat
surface.Comment: 4 pages, 4 figure
- …