5 research outputs found

    What is operative? Conceptualizing neuralgia: Neuroma, compression neuropathy, painful hyperalgesia, and phantom nerve pain

    Get PDF
    Neuralgia, or nerve pain, is a common presenting complaint for the hand surgeon. When the nerve at play is easily localized, and the cause of the pain is clear (eg, carpal tunnel syndrome), the patient may be easily treated with excellent results. However, in more complex cases, the underlying pathophysiology and cause of neuralgia can be more difficult to interpret; if incorrectly managed, this leads to frustration for both the patient and surgeon. Here we offer a way to conceptualize neuralgia into 4 categories-compression neuropathy, neuroma, painful hyperalgesia, and phantom nerve pain-and offer an illustrative clinical vignette and strategies for optimal management of each. Further, we delineate the reasons why compression neuropathy and neuroma are amenable to surgery, while painful hyperalgesia and phantom nerve pain are not

    Relief of chronic pain associated with increase in midline frontal theta power

    Get PDF
    INTRODUCTION: There is a need to identify objective cortical electrophysiological correlates for pain relief that could potentially contribute to a better pain management. However, the field of developing brain biomarkers for pain relief is still largely underexplored. OBJECTIVES: The objective of this study was to investigate cortical electrophysiological correlates associated with relief from chronic pain. Those features of pain relief could serve as potential targets for novel therapeutic interventions to treat pain. METHODS: In 12 patients with chronic pain in the upper or lower extremity undergoing a clinically indicated nerve block procedure, brain activity was recorded by means of electroencephalogram before and 30 minutes after the nerve block procedure. To determine the specific cortical electrophysiological correlates of relief from chronic pain, 12 healthy participants undergoing cold-pressor test to induce experimental acute pain were used as a control group. The data were analyzed to characterize power spectral density patterns of pain relief and identify their source generators at cortical level. RESULTS: Chronic pain relief was associated with significant delta, theta, and alpha power increase at the frontal area. However, only midfrontal theta power increase showed significant positive correlation with magnitude of reduction in pain intensity. The sources of theta power rebound were located in the left dorsolateral prefrontal cortex (DLPFC) and midline frontal cortex. Furthermore, theta power increase in the midline frontal cortex was significantly higher with chronic vs acute pain relief. CONCLUSION: These findings may provide basis for targeting chronic pain relief via modulation of the midline frontal theta oscillations

    Central amygdala metabotropic glutamate receptor 5 in the modulation of visceral pain

    Get PDF
    Painful bladder syndrome is a debilitating condition that affects 3–6% of women in the United States. Multiple lines of evidence suggest that changes in central nervous system processing are key to the development of chronic bladder pain conditions, but little is known regarding the underlying cellular, molecular, and neuronal mechanisms. Using a mouse model of distension-induced bladder pain, we found that the central nucleus of the amygdala (CeA) is a critical site of neuromodulation for processing of bladder nociception. Furthermore, we demonstrate that metabotropic glutamate receptor 5 (mGluR5) activation in the CeA induces bladder pain sensitization by increasing CeA output. Thus, pharmacological activation of mGluR5 in the CeA is sufficient to increase the response to bladder distension. Additionally, pharmacological blockade or virally-mediated conditional deletion of mGluR5 in the CeA reduced responses to bladder distention suggesting that mGluR5 in the CeA is also necessary for these responses. Finally, we used optogenetic activation of the CeA and demonstrated that this caused a robust increase in the visceral pain response. The CeA localized effects on responses to bladder distention are associated with changes in extracellular signal regulated kinases 1/2 phosphorylation in the spinal cord. Overall, these data demonstrate that mGluR5 activation leads to increased CeA output that drives bladder pain sensitization

    Metabotropic glutamate receptor 5 (mGluR5) regulates bladder nociception

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Interstitial cystitis/painful bladder syndrome (IC/PBS), is a severely debilitating chronic condition that is frequently unresponsive to conventional pain medications. The etiology is unknown, however evidence suggests that nervous system sensitization contributes to enhanced pain in IC/PBS. In particular, central nervous system plasticity of glutamatergic signaling involving NMDA and metabotropic glutamate receptors (mGluRs) has been implicated in a variety of chronic pain conditions. Here, we test the hypothesis that mGluR5 mediates both non-inflammatory and inflammatory bladder pain or nociception in a mouse model by monitoring the visceromotor response (VMR) during graded bladder distention.</p> <p>Results</p> <p>Using a combination of genetic and pharmacologic approaches, we provide evidence indicating that mGluR5 is necessary for the full expression of VMR in response to bladder distention in the absence of inflammation. Furthermore, we observed that mice infected with a uropathogenic strain of <it>Escherichia coli </it>(UPEC) develop inflammatory hyperalgesia to bladder distention, and that the selective mGluR5 antagonist fenobam [N-(3-chlorophenyl)-N'-(4,5-dihydro-1-methyl-4-oxo-1H-imidazole-2-yl) urea], reduces the VMR to bladder distention in UPEC-infected mice.</p> <p>Conclusions</p> <p>Taken together, these data suggest that mGluR5 modulates both inflammatory and non-inflammatory bladder nociception, and highlight the therapeutic potential for mGluR5 antagonists in the alleviation of bladder pain.</p
    corecore