162 research outputs found
Preferential closed channel blockade of HERG potassium currents by chemically synthesised BeKm‐1 scorpion toxin
The scorpion toxin peptide BeKm‐1 was synthesised by fluorenylmethoxycarbonyl solid phase chemistry and folded by air oxidation. The peptide's effects on heterologous human ether‐a‐go‐go‐related gene potassium current (I
HERG) in HEK293 cells were assessed using 'whole‐cell' patch clamp. Blockade of I
HERG by BeKm‐1 was concentration‐dependent, temperature‐dependent, and rapid in onset and reversibility. Blockade also exhibited inverse voltage dependence, inverse dependence on duration of depolarisation, and reverse use‐ and frequency‐dependence. Blockade by BeKm‐1 and recombinant ergtoxin, another scorpion toxin known to block HERG, differed in their recovery from HERG current inactivation elicited by strong depolarisation and in their ability to block HERG when the channels were already activated. We conclude that synthetic BeKm‐1 toxin blocks HERG preferentially through a closed (resting) state channel blockade mechanism, although some open channel blockade also occurs
Comparative effectiveness study of patient‐reported outcomes after proton therapy or intensity‐modulated radiotherapy for prostate cancer
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/106701/1/cncr28536.pd
Irresponsiveness of two retinoblastoma cases to conservative therapy correlates with up- regulation of hERG1 channels and of the VEGF-A pathway
<p>Abstract</p> <p>Background</p> <p>Treatment strategies for Retinoblastoma (RB), the most common primary intraocular tumor in children, have evolved over the past few decades and chemoreduction is currently the most popular treatment strategy. Despite success, systemic chemotherapeutic treatment has relevant toxicity, especially in the pediatric population. Antiangiogenic therapy has thus been proposed as a valuable alternative for pediatric malignancies, in particolar RB. Indeed, it has been shown that vessel density correlates with both local invasive growth and presence of metastases in RB, suggesting that angiogenesis could play a pivotal role for both local and systemic invasive growth in RB. We present here two cases of sporadic, bilateral RB that did not benefit from the conservative treatment and we provide evidence that the VEGF-A pathway is significantly up-regulated in both RB cases along with an over expression of hERG1 K<sup>+ </sup>channels.</p> <p>Case presentation</p> <p>Two patients showed a sporadic, bilateral RB, classified at Stage II of the Reese-Elsworth Classification. Neither of them got benefits from conservative treatment, and the two eyes were enucleated. In samples from both RB cases we studied the VEGF-A pathway: VEGF-A showed high levels in the vitreous, the <it>vegf-a, flt-1, kdr</it>, and <it>hif1-α </it>transcripts were over-expressed. Moreover, both the transcripts and proteins of the hERG1 K<sup>+ </sup>channels turned out to be up-regulated in the two RB cases compared to the non cancerous retinal tissue.</p> <p>Conclusions</p> <p>We provide evidence that the VEGF-A pathway is up-regulated in two particular aggressive cases of bilateral RB, which did not experience any benefit from conservative treatment, showing the overexpression of the <it>vegf-a</it>, <it>flt-1</it>, <it>kdr </it>and <it>hif1-α </it>transcripts and the high secretion of VEGF-A. Moreover we also show for the first time that the <it>herg1 </it>gene transcripts and protein are over expressed in RB, as occurs in several aggressive tumors. These results further stress the relevance of the VEGF-A pathway in RB and the correlation with hERG1, making aggressive and recurrent RB cases good candidates for antiangiogenesis therapies based on the targeting of VEGF-A.</p
Cyclodextrin Complexes of Reduced Bromonoscapine in Guar Gum Microspheres Enhance Colonic Drug Delivery
Here, we report improved solubility and enhanced colonic delivery of reduced bromonoscapine (Red-Br-Nos), a cyclic ether brominated analogue of noscapine, upon encapsulation of its cyclodextrin (CD) complexes in bioresponsive guar gum microspheres (GGM). Phase−solubility analysis suggested that Red-Br-Nos complexed with β-CD and methyl-β-CD in a 1:1 stoichiometry, with a stability constant (Kc) of 2.29 × 103 M−1 and 4.27 × 103 M−1. Fourier transforms infrared spectroscopy indicated entrance of an O−CH2 or OCH3−C6H4−OCH3 moiety of Red-Br-Nos in the β-CD or methyl-β- CD cavity. Furthermore, the cage complex of Red-Br-Nos with β-CD and methyl-β-CD was validated by several spectral techniques. Rotating frame Overhauser enhancement spectroscopy revealed that the Ha proton of the OCH3−C6H4−OCH3 moiety was closer to the H5 proton of β-CD and the H3 proton of the methyl-β-CD cavity. The solubility of Red-Br-Nos in phosphate buffer saline (PBS, pH ∼ 7.4) was improved by ∼10.7-fold and ∼21.2-fold when mixed with β-CD and methyl-β-CD, respectively. This increase in solubility led to a favorable decline in the IC50 by ∼2-fold and ∼3-fold for Red-Br-Nos−β-CD-GGM and Red-Br-Nos−methyl-β-CD-GGM formulations respectively, compared to free Red-Br-Nos−β-CD and Red-Br-Nos−methyl-β-CD in human colon HT-29 cells. GGM-bearing drug complex formulations were found to be highly cytotoxic to the HT-29 cell line and further effective with simultaneous continuous release of Red-Br-Nos from microspheres. This is the first study to showing the preparation of drug-complex loaded GGMS for colon delivery of Red-Br-Nos that warrants preclinical assessment for the effective management of colon cancer
The Detectability of Lyman Alpha Emission from Galaxies during the Epoch of Reionization
We study the visibility of the Lyman Alpha (Lya) emission line during the
Epoch of Reionization (EoR). Combining galactic outflow models with large-scale
semi-numeric simulations of reionization, we quantify the probability
distribution function (PDF) of the fraction of Lya photons transmitted through
the intergalactic medium (IGM), T_IGM. Our study focusses on galaxies
populating dark matter halos with masses of M_halo=1e10 M_sun at z=8.6, which
is inspired by the recent reported discovery of a galaxy at z=8.6 with strong
Lya line emission. For reasonable model assumptions, we find that winds cause
T_IGM>10% [50%], for the majority of galaxies, even when the Universe is ~80%
[60%] neutral by volume. Thus, the observed strong Lya emission from the
reported z=8.6 galaxy is consistent with a highly neutral IGM. We also
investigate the implications of the recent tentative evidence for a observed
decrease in the `LAE fraction' among drop-out galaxies between z=6 and z=7. If
confirmed, we show that a rapid evolution in x_HI will be required to explain
this observation via the effects of reionization.Comment: Matches published version. Minor revision
Oligosaccharide Binding Proteins from Bifidobacterium longum subsp. infantis Reveal a Preference for Host Glycans
Bifidobacterium longum subsp. infantis (B. infantis) is a common member of the infant intestinal microbiota, and it has been characterized by its foraging capacity for human milk oligosaccharides (HMO). Its genome sequence revealed an overabundance of the Family 1 of solute binding proteins (F1SBPs), part of ABC transporters and associated with the import of oligosaccharides. In this study we have used the Mammalian Glycan Array to determine the specific affinities of these proteins. This was correlated with binding protein expression induced by different prebiotics including HMO. Half of the F1SBPs in B. infantis were determined to bind mammalian oligosaccharides. Their affinities included different blood group structures and mucin oligosaccharides. Related to HMO, other proteins were specific for oligomers of lacto-N-biose (LNB) and polylactosamines with different degrees of fucosylation. Growth on HMO induced the expression of specific binding proteins that import HMO isomers, but also bind blood group and mucin oligosaccharides, suggesting coregulated transport mechanisms. The prebiotic inulin induced other family 1 binding proteins with affinity for intestinal glycans. Most of the host glycan F1SBPs in B. infantis do not have homologs in other bifidobacteria. Finally, some of these proteins were found to be adherent to intestinal epithelial cells in vitro. In conclusion, this study represents further evidence for the particular adaptations of B. infantis to the infant gut environment, and helps to understand the molecular mechanisms involved in this process
Inhibition of HERG1 K+ channel protein expression decreases cell proliferation of human small cell lung cancer cells
HERG (human ether-à-go-go-related gene) K+ currents fulfill important ionic functions in cardiac and other excitable cells. In addition, HERG channels influence cell growth and migration in various types of tumor cells. The mechanisms underlying these functions are still not resolved. Here, we investigated the role of HERG channels for cell growth in a cell line (SW2) derived from small cell lung cancer (SCLC), a malignant variant of lung cancer. The two HERG1 isoforms (HERG1a, HERG1b) as well as HERG2 and HERG3 are expressed in SW2 cells. Inhibition of HERG currents by acute or sustained application of E-4031, a specific ERG channel blocker, depolarized SW2 cells by 10–15 mV. This result indicated that HERG K+ conductance contributes considerably to the maintenance of the resting potential of about −45 mV. Blockage of HERG channels by E-4031 for up to 72 h did not affect cell proliferation. In contrast, siRNA-induced inhibition of HERG1 protein expression decreased cell proliferation by about 50%. Reduction of HERG1 protein expression was confirmed by Western blots. HERG current was almost absent in SW2 cells transfected with siRNA against HERG1. Qualitatively similar results were obtained in three other SCLC cell lines (OH1, OH3, H82), suggesting that the HERG1 channel protein is involved in SCLC cell growth, whereas the ion-conducting function of HERG1 seems not to be important for cell growth
Eag and HERG potassium channels as novel therapeutic targets in cancer
Voltage gated potassium channels have been extensively studied in relation to cancer. In this review, we will focus on the role of two potassium channels, Ether à-go-go (Eag), Human ether à-go-go related gene (HERG), in cancer and their potential therapeutic utility in the treatment of cancer. Eag and HERG are expressed in cancers of various organs and have been implicated in cell cycle progression and proliferation of cancer cells. Inhibition of these channels has been shown to reduce proliferation both in vitro and vivo studies identifying potassium channel modulators as putative inhibitors of tumour progression. Eag channels in view of their restricted expression in normal tissue may emerge as novel tumour biomarkers
Lactobacillus Adhesion to Mucus
Mucus provides protective functions in the gastrointestinal tract and plays an important role in the adhesion of microorganisms to host surfaces. Mucin glycoproteins polymerize, forming a framework to which certain microbial populations can adhere, including probiotic Lactobacillus species. Numerous mechanisms for adhesion to mucus have been discovered in lactobacilli, including partially characterized mucus binding proteins. These mechanisms vary in importance with the in vitro models studied, which could significantly affect the perceived probiotic potential of the organisms. Understanding the nature of mucus-microbe interactions could be the key to elucidating the mechanisms of probiotic adhesion within the host
- …