6 research outputs found
Minoritized languages and access to justice in France: a case study of Breton and Western Armenian speakers
This thesis examines access to justice in France for minority language speakers, a country which has long opposed the recognition of minoritized and endangered languages. In the first instance, this thesis investigates how a minoritized language is defined in the French context. Once defined, I ask how are minority language speakers able to access judicial systems, and how the French State interacts with the language and minority rights agreements to which it has signed up.
Drawing on linguistic justice, I argue that that rather than perceive minoritized languages as autonomous entities that are entitled to rights, the rights of minoritized people to have access to justice on their own terms and on the basis of their own language practices should be
prioritised. However, this thesis demonstrates that minority language practice is limited in public settings by the French State. Enshrined by key French Republican models and legislation such as the Constitution and the Toubon Act, French is protected as the majority and national
language by state bodies such as the Académie Française and the Délégation générale à la langue française.
In investigating the judicial setting as an example of a French State public setting and taking as case studies speakers of Breton and Western Armenian as examples of regional and immigrant minority languages respectively, I test the applicability of language and minority rights presented in the UDHR and ECRML on these groups.
However, the French State is noncompliant in adopting and implementing the minority and language related rights of the agreements that it has signed, citing that pro-minority and linguistically diverse language policy is incompatible with the values of the State. Therefore,
this thesis asserts that as a result of the noncompliance by the French State to adopt the ECRML and to implement the minority and linguistic rights in the UDHR, minority language speakers in France are not able to have access to justice on their own terms and on the basis of their own
language practices.
The case studies in this thesis consist of documented interactions between minority language speakers and French judicial institutions, government publications, and scholarship reflecting the reality of Breton and Western Armenian speaking communities in France as languages listed by UNESCO as endangered languages. Situating these case studies within the wider discussion about minoritized and endangered languages, Romaine (2007) asserts that globally, minority language communities face erasure. In response to this global decline of minority language practice, linguistic justice scholarship presents interventionalist measures, such as language
documentation and rights, as a means to protect minority languages from erasure
Recommended from our members
The Indian Easterly Jet During the pre-monsoon season in India
We identify for the first time an Indian Easterly Jet (IEJ) in the mid-troposphere during the pre-monsoon using reanalysis data. The IEJ is weaker and smaller than the African Easterly Jet over West Africa, with a climatological location of 10°N, 60–90°E, 700 hPa, and strength 6–7 m s−1 during March–May. The IEJ is a thermal wind associated with low-level meridional gradients in temperature (positive) and moisture (negative), resulting from equatorward moist convection and poleward dry convection. The IEJ is associated with a negative meridional potential vorticity gradient, therefore satisfying the Charney-Stern necessary condition for instability. However, no wave activity is detected, suggesting that the potential for combined barotropic-baroclinic instability is not often realized. IEJ strong (weak) years feature increased (reduced) near-surface temperatures and drier (wetter) conditions over India. This study provides an introduction to the IEJ's role in pre-monsoon dynamics, and a platform for further research
Recommended from our members
A climatology of summer-time Arctic cyclones using a modified phase space
We perform a climatological analysis of summer-time Arctic cyclone structure in reanalysis data using a phase space approach. A classification scheme for Arctic cyclones is proposed, dependent on whether vorticity structure during development is low-level-dominant (LLD) or upper-level-dominant (ULD). During growth, LLD cyclones (65.5%) exhibit warm-core asymmetric structures, whereas ULD cyclones (34.5%) have cold-core asymmetric structures. LLD cyclones typically have greater thermal asymmetry during growth. However, a transition to a persistent cold-core axisymmetric structure after maturity is characteristic of summer-time Arctic cyclones, regardless of structure during growth. LLD cyclones are typically stronger and preferentially track on the Russian coastline where there is high baroclinicity, whereas ULD cyclones tend to be longer-lived and preferentially track in the Pacific sector, where they can interact with tropopause polar vortices. This study provides a platform for further research into different classes of Arctic cyclones and associated hazardous weather, and ultimately for developing conceptual models
The THINICE field campaign: Interactions between Arctic cyclones, tropopause polar vortices, clouds and sea ice in summer
The THINICE field campaign, based from Svalbard in August 2022, provided unique observations of summertime Arctic cyclones, their coupling with cloud cover, and interactions with tropopause polar vortices and sea ice conditions. THINICE was motivated by the need to advance our understanding of these processes and to improve coupled models used to forecast weather and sea ice, as well as long-term projections of climate change in the Arctic. Two research aircraft were deployed with complementary instrumentation. The Safire ATR42 aircraft, equipped with the RALI (RAdar-LIdar) remote sensing instrumentation and in-situ cloud microphysics probes, flew in the mid-troposphere to observe the wind and multi-phase cloud structure of Arctic cyclones. The British Antarctic Survey MASIN aircraft flew at low levels measuring sea-ice properties, including surface brightness temperature, albedo and roughness, and the turbulent fluxes that mediate exchange of heat and momentum between the atmosphere and the surface. Long duration instrumented balloons, operated by WindBorne Systems, sampled meteorological conditions within both cyclones and tropospheric polar vortices across the Arctic. Several novel findings are highlighted. Intense, shallow low-level jets along warm fronts were observed within three Arctic cyclones using the Doppler radar and turbulence probes. A detailed depiction of the interweaving layers of ice crystals and supercooled liquid water in mixed-phase clouds is revealed through the synergistic combination of the Doppler radar, the lidar and in-situ microphysical probes. Measurements of near-surface turbulent fluxes combined with remote sensing measurements of sea ice properties are being used to characterize atmosphere-sea ice interactions in the marginal ice zone
The THINICE field campaign: Interactions between Arctic cyclones, tropopause polar vortices, clouds and sea ice in summer
International audienceThe THINICE field campaign, based from Svalbard in August 2022, provided unique observations of summertime Arctic cyclones, their coupling with cloud cover, and interactions with tropopause polar vortices and sea ice conditions. THINICE was motivated by the need to advance our understanding of these processes and to improve coupled models used to forecast weather and sea ice, as well as long-term projections of climate change in the Arctic. Two research aircraft were deployed with complementary instrumentation. The Safire ATR42 aircraft, equipped with the RALI (RAdar-LIdar) remote sensing instrumentation and in-situ cloud microphysics probes, flew in the mid-troposphere to observe the wind and multi-phase cloud structure of Arctic cyclones. The British Antarctic Survey MASIN aircraft flew at low levels measuring sea-ice properties, including surface brightness temperature, albedo and roughness, and the turbulent fluxes that mediate exchange of heat and momentum between the atmosphere and the surface. Long duration instrumented balloons, operated by WindBorne Systems, sampled meteorological conditions within both cyclones and tropospheric polar vortices across the Arctic. Several novel findings are highlighted. Intense, shallow low-level jets along warm fronts were observed within three Arctic cyclones using the Doppler radar and turbulence probes. A detailed depiction of the interweaving layers of ice crystals and supercooled liquid water in mixed-phase clouds is revealed through the synergistic combination of the Doppler radar, the lidar and in-situ microphysical probes. Measurements of near-surface turbulent fluxes combined with remote sensing measurements of sea ice properties are being used to characterize atmosphere-sea ice interactions in the marginal ice zone
Recommended from our members
The THINICE field campaign: Interactions between Arctic cyclones, tropopause polar vortices, clouds and sea ice in summer
The THINICE field campaign, based from Svalbard in August 2022, provided unique observations of summertime Arctic cyclones, their coupling with cloud cover, and interactions with tropopause polar vortices and sea ice conditions. THINICE was motivated by the need to advance our understanding of these processes and to improve coupled models used to forecast weather and sea ice, as well as long-term projections of climate change in the Arctic. Two research aircraft were deployed with complementary instrumentation. The Safire ATR42 aircraft, equipped with the RALI (RAdar-LIdar) remote sensing instrumentation and in-situ cloud microphysics probes, flew in the mid-troposphere to observe the wind and multi-phase cloud structure of Arctic cyclones. The British Antarctic Survey MASIN aircraft flew at low levels measuring sea-ice properties, including surface brightness temperature, albedo and roughness, and the turbulent fluxes that mediate exchange of heat and momentum between the atmosphere and the surface. Long duration instrumented balloons, operated by WindBorne Systems, sampled meteorological conditions within both cyclones and tropospheric polar vortices across the Arctic. Several novel findings are highlighted. Intense, shallow low-level jets along warm fronts were observed within three Arctic cyclones using the Doppler radar and turbulence probes. A detailed depiction of the interweaving layers of ice crystals and supercooled liquid water in mixed-phase clouds is revealed through the synergistic combination of the Doppler radar, the lidar and in-situ microphysical probes. Measurements of near-surface turbulent fluxes combined with remote sensing measurements of sea ice properties are being used to characterize atmosphere-sea ice interactions in the marginal ice zone