2 research outputs found

    Towards a covariant canonical formulation for closed topological defects without boundaries

    Get PDF
    On the basis of the covariant description of the canonical formalism for quantization, we present the basic elements of the symplectic geometry for a restricted class of topological defects propagating on a curved background spacetime. We discuss the future extensions of the present results.Comment: LaTeX, 12 pages, submitted to Phys. Lett. B. (2002

    Local continuity laws on the phase space of Einstein equations with sources

    Full text link
    Local continuity equations involving background fields and variantions of the fields, are obtained for a restricted class of solutions of the Einstein-Maxwell and Einstein-Weyl theories using a new approach based on the concept of the adjoint of a differential operator. Such covariant conservation laws are generated by means of decoupled equations and their adjoints in such a way that the corresponding covariantly conserved currents possess some gauge-invariant properties and are expressed in terms of Debye potentials. These continuity laws lead to both a covariant description of bilinear forms on the phase space and the existence of conserved quantities. Differences and similarities with other approaches and extensions of our results are discussed.Comment: LaTeX, 13 page
    corecore