2,030 research outputs found

    Majority-Vote Cellular Automata, Ising Dynamics, and P-Completeness

    Full text link
    We study cellular automata where the state at each site is decided by a majority vote of the sites in its neighborhood. These are equivalent, for a restricted set of initial conditions, to non-zero probability transitions in single spin-flip dynamics of the Ising model at zero temperature. We show that in three or more dimensions these systems can simulate Boolean circuits of AND and OR gates, and are therefore P-complete. That is, predicting their state t time-steps in the future is at least as hard as any other problem that takes polynomial time on a serial computer. Therefore, unless a widely believed conjecture in computer science is false, it is impossible even with parallel computation to predict majority-vote cellular automata, or zero-temperature single spin-flip Ising dynamics, qualitatively faster than by explicit simulation.Comment: 10 pages with figure

    Quasi-Linear Cellular Automata

    Full text link
    Simulating a cellular automaton (CA) for t time-steps into the future requires t^2 serial computation steps or t parallel ones. However, certain CAs based on an Abelian group, such as addition mod 2, are termed ``linear'' because they obey a principle of superposition. This allows them to be predicted efficiently, in serial time O(t) or O(log t) in parallel. In this paper, we generalize this by looking at CAs with a variety of algebraic structures, including quasigroups, non-Abelian groups, Steiner systems, and others. We show that in many cases, an efficient algorithm exists even though these CAs are not linear in the previous sense; we term them ``quasilinear.'' We find examples which can be predicted in serial time proportional to t, t log t, t log^2 t, and t^a for a < 2, and parallel time log t, log t log log t and log^2 t. We also discuss what algebraic properties are required or implied by the existence of scaling relations and principles of superposition, and exhibit several novel ``vector-valued'' CAs.Comment: 41 pages with figures, To appear in Physica

    Internal Diffusion-Limited Aggregation: Parallel Algorithms and Complexity

    Get PDF
    The computational complexity of internal diffusion-limited aggregation (DLA) is examined from both a theoretical and a practical point of view. We show that for two or more dimensions, the problem of predicting the cluster from a given set of paths is complete for the complexity class CC, the subset of P characterized by circuits composed of comparator gates. CC-completeness is believed to imply that, in the worst case, growing a cluster of size n requires polynomial time in n even on a parallel computer. A parallel relaxation algorithm is presented that uses the fact that clusters are nearly spherical to guess the cluster from a given set of paths, and then corrects defects in the guessed cluster through a non-local annihilation process. The parallel running time of the relaxation algorithm for two-dimensional internal DLA is studied by simulating it on a serial computer. The numerical results are compatible with a running time that is either polylogarithmic in n or a small power of n. Thus the computational resources needed to grow large clusters are significantly less on average than the worst-case analysis would suggest. For a parallel machine with k processors, we show that random clusters in d dimensions can be generated in O((n/k + log k) n^{2/d}) steps. This is a significant speedup over explicit sequential simulation, which takes O(n^{1+2/d}) time on average. Finally, we show that in one dimension internal DLA can be predicted in O(log n) parallel time, and so is in the complexity class NC
    • …
    corecore