4,724 research outputs found
Of Wines and Reviews: Measuring and Modeling the Vivino Wine Social Network
This paper presents an analysis of social experiences around wine consumption
through the lens of Vivino, a social network for wine enthusiasts with over 26
million users worldwide. We compare users' perceptions of various wine types
and regional styles across both New and Old World wines, examining them across
price ranges, vintages, regions, varietals, and blends. Among other things, we
find that ratings provided by Vivino users are not biased by cost. We then
study how wine characteristics, language in wine reviews, and the distribution
of wine ratings can be combined to develop prediction models. More
specifically, we model user behavior to develop a regression model for
predicting wine ratings, and a classifier for determining user review
preferences.Comment: A preliminary version of this paper appears in the Proceedings of the
IEEE/ACM International Conference on Advances in Social Networks Analysis and
Mining (ASONAM 2018). This is the full versio
Danger is My Middle Name: Experimenting with SSL Vulnerabilities in Android Apps
This paper presents a measurement study of information leakage and SSL
vulnerabilities in popular Android apps. We perform static and dynamic analysis
on 100 apps, downloaded at least 10M times, that request full network access.
Our experiments show that, although prior work has drawn a lot of attention to
SSL implementations on mobile platforms, several popular apps (32/100) accept
all certificates and all hostnames, and four actually transmit sensitive data
unencrypted. We set up an experimental testbed simulating man-in-the-middle
attacks and find that many apps (up to 91% when the adversary has a certificate
installed on the victim's device) are vulnerable, allowing the attacker to
access sensitive information, including credentials, files, personal details,
and credit card numbers. Finally, we provide a few recommendations to app
developers and highlight several open research problems.Comment: A preliminary version of this paper appears in the Proceedings of ACM
WiSec 2015. This is the full versio
Controlled Data Sharing for Collaborative Predictive Blacklisting
Although sharing data across organizations is often advocated as a promising
way to enhance cybersecurity, collaborative initiatives are rarely put into
practice owing to confidentiality, trust, and liability challenges. In this
paper, we investigate whether collaborative threat mitigation can be realized
via a controlled data sharing approach, whereby organizations make informed
decisions as to whether or not, and how much, to share. Using appropriate
cryptographic tools, entities can estimate the benefits of collaboration and
agree on what to share in a privacy-preserving way, without having to disclose
their datasets. We focus on collaborative predictive blacklisting, i.e.,
forecasting attack sources based on one's logs and those contributed by other
organizations. We study the impact of different sharing strategies by
experimenting on a real-world dataset of two billion suspicious IP addresses
collected from Dshield over two months. We find that controlled data sharing
yields up to 105% accuracy improvement on average, while also reducing the
false positive rate.Comment: A preliminary version of this paper appears in DIMVA 2015. This is
the full version. arXiv admin note: substantial text overlap with
arXiv:1403.212
- …