50 research outputs found

    Spectacular nucleosynthesis from early massive stars

    Full text link
    Stars formed with initial mass over 50 Msun are very rare today, but they are thought to be more common in the early universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early followup of SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early universe. J0931+0038 has relatively high metallicity ([Fe/H] = -1.76 +/- 0.13) but an extreme odd-even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass > 50 Msun, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys.Comment: 11 pages + 22 page appendix, accepted to ApJ

    Spectacular Nucleosynthesis from Early Massive Stars

    Get PDF
    Stars that formed with an initial mass of over 50 M ⊙ are very rare today, but they are thought to be more common in the early Universe. The fates of those early, metal-poor, massive stars are highly uncertain. Most are expected to directly collapse to black holes, while some may explode as a result of rotationally powered engines or the pair-creation instability. We present the chemical abundances of J0931+0038, a nearby low-mass star identified in early follow-up of the SDSS-V Milky Way Mapper, which preserves the signature of unusual nucleosynthesis from a massive star in the early Universe. J0931+0038 has a relatively high metallicity ([Fe/H] = −1.76 ± 0.13) but an extreme odd–even abundance pattern, with some of the lowest known abundance ratios of [N/Fe], [Na/Fe], [K/Fe], [Sc/Fe], and [Ba/Fe]. The implication is that a majority of its metals originated in a single extremely metal-poor nucleosynthetic source. An extensive search through nucleosynthesis predictions finds a clear preference for progenitors with initial mass >50 M ⊙, making J0931+0038 one of the first observational constraints on nucleosynthesis in this mass range. However, the full abundance pattern is not matched by any models in the literature. J0931+0038 thus presents a challenge for the next generation of nucleosynthesis models and motivates the study of high-mass progenitor stars impacted by convection, rotation, jets, and/or binary companions. Though rare, more examples of unusual early nucleosynthesis in metal-poor stars should be found in upcoming large spectroscopic surveys

    Sustainable energy action plans: monitoring the implementation of strategies for sustainability for municipalities in northen Italy

    Full text link
    A considerable number of Italian municipalities joined the “Covenant of Majors” European Project, promoting and applying the planning energy strategies by mean of Sustainable Energy Action Plans. The European Commission, after two years requires a monitoring to verify if the carbon dioxide emissions reduction targets are achieved. The paper analyzes the results of SEAP monitoring for some municipalities in northern Italy. The analysis, which deepens the civil sector in detail, allows for a detailed examination and comparison of the different strategies proposed by the municipalities, highlighting critical aspects and potentialities. SEAP has been proven to be one of the most powerful and effective strategy to promote policies in municipalities to face climate changes. The targets for the reduction of climatic gas emissions have been achieved by 7 municipalities out of 12 with an advance of 2 years and the others are very close to this target

    Structural aspects and the anodic behaviour of Fe34Ni36Cr10P14B6 amorphous alloy submitted to different heat treatments

    Full text link
    The influence of heat treatments on the anodic behaviour and on the structure of Fe34Ni36Cr10P14B6 amorphous alloy, in 1 N H2SO4 and 1 N HCl solutions, has been studied by standard electrochemical techniques associated with X-ray diffraction analysis, differential scanning calorimetry and Auger electron spectroscopy. The as-quenched amorphous alloy displays very good corrosion performance in the testing environments. Heat treatments (from 150 to 500°C) induce structural relaxation processes and the amorphous to crystalline transition, thus bringing about contrasting effects on the corrosion resistance of the material. A superior performance has been observed in specimens annealed for 2 h at 350°C. The presence of an oxide surface layer is revealed by AES. A detailed analysis of the influence of structural and compositional aspects is given

    Signalling pathways regulating muscle mass in ageing skeletal muscle. The role of the IGF1-Akt-mTOR-FoxO pathway.

    Full text link
    During ageing skeletal muscles undergo a process of structural and functional remodelling that leads to sarcopenia, a syndrome characterized by loss of muscle mass and force and a major cause of physical frailty. To determine the causes of sarcopenia and identify potential targets for interventions aimed at mitigating ageing-dependent muscle wasting, we focussed on the main signalling pathway known to control protein turnover in skeletal muscle, consisting of the insulin-like growth factor 1 (IGF1), the kinase Akt and its downstream effectors, the mammalian target of rapamycin (mTOR) and the transcription factor FoxO. Expression analyses at the transcript and protein level, carried out on well-characterized cohorts of young, old sedentary and old active individuals and on mice aged 200, 500 and 800 days, revealed only modest age-related differences in this pathway. Our findings suggest that during ageing there is no downregulation of IGF1/Akt pathway and that sarcopenia is not due to FoxO activation and upregulation of the proteolytic systems. A potentially interesting result was the increased phosphorylation of the ribosomal protein S6, indicative of increased activation of mTOR complex1 (mTORC1), in aged mice. This result may provide the rationale why rapamycin treatment and caloric restriction promote longevity, since both interventions blunt activation of mTORC1; however, this change was not statistically significant in humans. Finally, genetic perturbation of these pathways in old mice aimed at promoting muscle hypertrophy via Akt overexpression or preventing muscle loss through inactivation of the ubiquitin ligase atrogin1 were found to paradoxically cause muscle pathology and reduce lifespan, suggesting that drastic activation of the IGF1-Akt pathway may be counterproductive, and that sarcopenia is accelerated, not delayed, when protein degradation pathways are impaired

    Erythrina speciosa (Leguminosae-Papilionoideae) under soil water saturation: morphophysiological and growth responses

    Get PDF
    Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Erythrina speciosa is a Neotropical tree that grows mainly in moist habitats. To characterize the physiological, morphological and growth responses to soil water saturation, young plants of E. speciosa were subjected experimentally to soil flooding. Flooding was imposed from 2 to 4 cm above the soil surface in water-filled tanks for 60 d. Non-flooded (control) plants were well watered, but never flooded. The net CO(2) exchange (A(CO2)), stomatal conductance (g(s)) and intercellular CO(2) concentration (C(i)) were assessed for 60 d. Soluble sugar and free amino acid concentrations and the proportion of free amino acids were determined at 0, 7, 10, 21, 28 and 45 d of treatments. After 28, 45 and 60 d, dry masses of leaves, stems and roots were determined. Stem and root cross-sections were viewed using light microscopy. The A(CO2) and g(s) were severely reduced by flooding treatment, but only for the first 10 d. The soluble sugars and free amino acids increased until the tenth day but decreased subsequently. The content of asparagine in the roots showed a drastic decrease while those of alanine and gamma-aminobutyric increased sharply throughout the first 10 d after flooding. From the 20th day on, the flooded plants reached A(CO2) and g(s) values similar to those observed for non-flooded plants. These events were coupled with the development of lenticels, adventitious roots and aerenchyma tissue of honeycomb type. Flooding reduced the growth rate and altered carbon allocation. The biomass allocated to the stem was higher and the root mass ratio was lower for flooded plants when compared with non-flooded plants. Erythrina speciosa showed 100 % survival until the 60th day of flooding and was able to recover its metabolism. The recovery during soil flooding seems to be associated with morphological alterations, such as development of hypertrophic lenticels, adventitious roots and aerenchyma tissue, and with the maintenance of neutral amino acids in roots under long-term exposure to root-zone O(2) deprivation.1044671680Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)FAPESP [03/12595-7]CNPq [520334/99-0
    corecore