189 research outputs found

    Effect of Transgene Location, Transcriptional Control Elements and Transgene Features in Armed Oncolytic Adenoviruses

    Get PDF
    Clinical results with oncolytic adenoviruses (OAds) used as antitumor monotherapies show limited efficacy. To increase OAd potency, transgenes have been inserted into their genome, a strategy known as "arming OAds". Here, we review different parameters that affect the outcome of armed OAds. Recombinant adenovirus used in gene therapy and vaccination have been the basis for the design of armed OAds. Hence, early region 1 (E1) and early region 3 (E3) have been the most commonly used transgene insertion sites, along with partially or complete E3 deletions. Besides transgene location and orientation, transcriptional control elements, transgene function, either virocentric or immunocentric, and even the codons encoding it, greatly impact on transgene levels and virus fitness

    Expanding the FurC (PerR) regulon in Anabaena (Nostoc) sp. PCC 7120: Genome-wide identification of novel direct targets uncovers FurC participation in central carbon metabolism regulation

    Get PDF
    FurC (PerR, Peroxide Response Regulator) from Anabaena sp. PCC 7120 (also known as Nostoc sp. PCC 7120) is a master regulator engaged in the modulation of relevant processes including the response to oxidative stress, photosynthesis and nitrogen fixation. Previous differential gene expression analysis of a furC-overexpressing strain (EB2770FurC) allowed the inference of a putative FurC DNA-binding consensus sequence. In the present work, more data concerning the regulon of the FurC protein were obtained through the searching of the putative FurC-box in the whole Anabaena sp. PCC 7120 genome. The total amount of novel FurC-DNA binding sites found in the promoter regions of genes with known function was validated by electrophoretic mobility shift assays (EMSA) identifying 22 new FurC targets. Some of these identified targets display relevant roles in nitrogen fixation (hetR and hgdC) and carbon assimilation processes (cmpR, glgP1 and opcA), suggesting that FurC could be an additional player for the harmonization of carbon and nitrogen metabolisms. Moreover, differential gene expression of a selection of newly identified FurC targets was measured by Real Time RT-PCR in the furC-overexpressing strain (EB2770FurC) comparing to Anabaena sp. PCC 7120 revealing that in most of these cases FurC could act as a transcriptional activator

    uPAR-controlled oncolytic adenoviruses eliminate cancer stem cells in human pancreatic tumors

    Full text link
    Abstract Pancreatic tumors contain cancer stem cells highly resistant to chemotherapy. The identification of therapies that can eliminate this population of cells might provide with more effective treatments. In the current work we evaluated the potential of oncolytic adenoviruses to act against pancreatic cancer stem cells (PCSC). PCSC from two patient-derived xenograft models were isolated from orthotopic pancreatic tumors treated with saline, or with the chemotherapeutic agent gemcitabine. An enrichment in the number of PCSC expressing the cell surface marker CD133 and a marked enhancement on tumorsphere formation was observed in gemcitabine treated tumors. No significant increase in the CD44, CD24, and epithelial-specific antigen (ESA) positive cells was observed. Neoplastic sphere-forming cells were susceptible to adenoviral infection and exposure to oncolytic adenoviruses resulted in elevated cytotoxicity with both Adwt and the tumor specific AduPARE1A adenovirus. In vivo, intravenous administration of a single dose of AduPARE1A in human-derived pancreatic xenografts led to a remarkable anti-tumor effect. In contrast to gemcitabine AduPARE1A treatment did not result in PCSC enrichment. No enrichment on tumorspheres neither on the CD133+ population was detected. Therefore our data provide evidences of the relevance of uPAR-controlled oncolytic adenoviruses for the elimination of pancreatic cancer stem cells

    Unbalancing Zur (FurB)-mediated homeostasis in Anabaena sp. PCC7120: Consequences on metal trafficking, heterocyst development and biofilm formation

    Get PDF
    Zinc is required for the activity of many enzymes and plays an essential role in gene regulation and redox homeostasis. In Anabaena (Nostoc) sp. PCC7120, the genes involved in zinc uptake and transport are controlled by the metalloregulator Zur (FurB). Comparative transcriptomics of a zur mutant (Δzur) with the parent strain unveiled unexpected links between zinc homeostasis and other metabolic pathways. A notable increase in the transcription of numerous desiccation tolerance-related genes, including genes involved in the synthesis of trehalose and the transference of saccharide moieties, among many others, was detected. Biofilm formation analysis under static conditions revealed a reduced capacity of Δzur filaments to form biofilms compared to the parent strain, and such capacity was enhanced when Zur was overexpressed. Furthermore, microscopy analysis revealed that zur expression is required for the correct formation of the envelope polysaccharide layer in the heterocyst, as Δzur cells showed reduced staining with alcian blue compared to Anabaena sp. PCC7120. We suggest that Zur is an important regulator of the enzymes involved in the synthesis and transport of the envelope polysaccharide layer, influencing heterocyst development and biofilm formation, both relevant processes for cell division and interaction with substrates in its ecological niche

    FurC (PerR) from Anabaena sp. PCC7120: a versatile transcriptional regulator engaged in the regulatory network of heterocyst development and nitrogen fixation

    Get PDF
    FurC (PerR) from Anabaena sp. PCC7120 was previously described as a key transcriptional regulator involved in setting off the oxidative stress response. In the last years, the cross-talk between oxidative stress, iron homeostasis and nitrogen metabolism is becoming more and more evident. In this work, the transcriptome of a furC-overexpressing strain was compared with that of a wild-type strain under both standard and nitrogen-deficiency conditions. The results showed that the overexpression of furC deregulates genes involved in several categories standing out photosynthesis, iron transport and nitrogen metabolism. The novel FurC-direct targets included some regulatory elements that control heterocyst development (hetZ and asr1734), genes directly involved in the heterocyst envelope formation (devBCA and hepC) and genes which participate in the nitrogen fixation process (nifHDK and nifH2, rbrA rubrerythrin and xisHI excisionase). Likewise, furC overexpression notably impacts the mRNA levels of patA encoding a key protein in the heterocyst pattern formation. The relevance of FurC in these processes is bringing out by the fact that the overexpression of furC impairs heterocyst development and cell growth under nitrogen step-down conditions. In summary, this work reveals a new player in the complex regulatory network of heterocyst formation and nitrogen fixation

    Urokinase-type Plasminogen Activator Receptor Transcriptionally Controlled Adenoviruses Eradicate Pancreatic Tumors and Liver Metastasis in Mouse Models

    Get PDF
    Treatment options for pancreatic cancer have shown limited success mainly owing to poor selectivity for pancreatic tumor tissue and to a lack of activity in the tumor. In this study, we describe the ability of the urokinase-type plasminogen activator receptor (uPAR) promoter to efficiently and selectively target pancreatic tumors and metastases, which enables the successful management of pancreatic cancer. We have generated a replication-defective reporter adenovirus, AduPARLuc, and a conditionally replicating adenovirus, AduPARE1A, and we have studied the selectivity and antitumoral efficacy in pancreatic tumors and metastases. Toxicity was studied on intravascular delivery. We demonstrate that the uPAR promoter is highly active in pancreatic tumors but very weak in normal tissues. Tumor specificity is evidenced by a 100-fold increase in the tumor-to-liver ratio and by selective targeting of liver metastases (P < .001). Importantly, the AduPARE1A maintains the oncolytic activity of the wild-type virus, with reduced toxicity, and exhibits significant antitumoral activity (25% tumor eradication) and prolonged survival in pancreatic xenograft models (P < .0001). Furthermore, upon intravascular delivery, we demonstrate complete eradication of liver metastasis in 33% of mice, improving median survival (P = 5.43 x 10(-5)). The antitumoral selective activity of AduPARE1A shows the potential of uPAR promoter-based therapies in pancreatic cancer treatment

    Bioselection Reveals miR-99b and miR-485 as Enhancers of Adenoviral Oncolysis in Pancreatic Cancer

    Get PDF
    Oncolytic viruses are designed for cancer treatment. Cell-virus interactions are key determinants for successful viral replication. Therefore, the extensive reprogramming of gene expression that occurs in tumor cells might create a hurdle for viral propagation. We used a replication-based approach of a microRNA (miRNA) adenoviral library encoding up to 243 human miRNAs as a bioselection strategy to identify miRNAs that facilitate adenoviral oncolytic activity in pancreatic ductal adenocarcinoma. We identify two miRNAs, miR-99b and miR-85, that function as enhancers of adenoviral oncolysis by improving the intra-and extracellular yield of mature virions. An increased adenoviral activity is the consequence of enhanced E1A and late viral protein expression, which is probably mediated by the downregulation of the transcriptional repressors ELF4, MDM2, and KLF8, which we identify as miR-99b or miR-485 target genes. Arming the oncolytic adenovirus ICOVIR15 with miR-99b or miR-485 enhances its fitness and its antitumoral activity. Our results demonstrate the potential of this strategy to improve oncolytic adenovirus potency, and they highlight miR-99b and miR-485 as sensitizers of adenoviral replication

    2-oxoglutarate modulates the affinity of FurA for the ntcA promoter in Anabaena sp. PCC 7120

    Get PDF
    2-oxoglutarate (2-OG) is a central metabolite that acts as a signaling molecule informing about the status of the carbon/nitrogen balance of the cell. In recent years, some transcriptional regulators and even two-component systems have been described as 2-OG sensors. In the nitrogen-fixing cyanobacterium Anabaena sp. PCC 7120, two master regulators, NtcA and FurA, are deeply involved in the regulation of nitrogen metabolism. Both of them show a complex intertwined regulatory circuit to achieve a suitable regulation of nitrogen fixation. In this work, 2-OG is found to bind FurA, modulating the specific binding of FurA to the ntcA promoter. This study provides evidence of a new additional control point in the complex network controlled by the NtcA and FurA proteins

    Terapias avanzadas en enfermedades raras

    Get PDF
    Advanced therapies are a group of medicines for human use based on gene therapy, somatic cell therapy or tissue-engineering. In this paper we present some general basic concepts, describe the most promising strategies and summarize the results of a variety of clinical trials for a significant group of monogenic inherited diseases. Major emphasis is placed on ex vivo gene therapy approaches for diseases of the hematopoietic system, since these corresponded to pioneering treatments that have guided research in this field. We also highlight some examples of successful in vivo gene therapy and point out the contribution of somatic cell therapy and tissue engineering to the group of rare skin diseases. We aim to provide an overview of the state of the art of advanced therapies in rare diseases and highlight some of the cutting-edge technologies under development that can provide more effective and safer treatments in the future.Las terapias avanzadas comprenden un grupo de medicamentos biológicos basados en la terapia génica, la terapia celular y la ingeniería de tejidos. En este artículo se presentan algunos conceptos básicos, se describen las estrategias más prometedoras y se detallan los resultados de diferentes ensayos clínicos para un grupo significativo de enfermedades, especialmente las enfermedades hereditarias monogénicas. Se hace un mayor hincapié en la terapia génica ex vivo en enfermedades del sistema hematopoyético, al ser el grupo de enfermedades pioneras que además han orientado la investigación en el campo. Destacamos también algunos ejemplos de éxito de terapia génica in vivo y señalamos la contribución de la terapia celular y de la ingeniería de tejidos al grupo de enfermedades raras de la piel. Pretendemos con ello dar una visión de la situación de las terapias avanzadas en enfermedades raras y señalamos algunas de las vías de futuro orientadas al desarrollo de tratamientos más eficaces y seguros

    Transgene codon usage drives viral fitness and therapeutic efficacy in oncolytic adenoviruses.

    Get PDF
    Arming oncolytic adenoviruses with therapeutic transgenes is a well-established strategy for multimodal tumour attack. However, this strategy sometimes leads to unexpected attenuated viral replication and a loss of oncolytic effects, preventing these viruses from reaching the clinic. Previous work has shown that altering codon usage in viral genes can hamper viral fitness. Here, we have analysed how transgene codon usage impacts viral replication and oncolytic activity. We observe that, although transgenes with optimized codons show high expression levels at the first round of infection, they impair viral fitness and are therefore not expressed in a sustained manner. Conversely, transgenes encoded by suboptimal codons do not compromise viral replication and are thus stably expressed over time, allowing a greater oncolytic activity both in vitro and in vivo. Altogether, our work shows that fine-tuning codon usage leads to a concerted optimization of transgene expression and viral replication paving the way for the rational design of more efficacious oncolytic therapies
    corecore