5 research outputs found

    Researches regarding the reducing of burr size by optimising the cutting parameters on a CNC milling machine

    No full text
    This paper presents some experimental researches regarding burrs dimensions reduction that appear after the milling process together with an approach to reduce or eliminate the burrs resulted after this process. In order to reduce burrs dimensions, the milling process was executed with different cutting parameters and strategies then the results were evaluated

    Electromagnetic Forming Analysis of the Al 99.0 Sheet with Tools of Different Configurations

    No full text
    Electromagnetic forming is an advanced manufacturing procedure, characterized by the fact that the tool carrying the deformation force does not touch the workpiece. This paper presents research regarding the electromagnetic forming of Al 99.0 (EN AW-1200) sheet with coils, having different configurations. The purpose of the research was to find the flat spiral coil configuration that ensures maximum deformation of the workpiece. Flat spiral coils with different gaps between the coil and the workpiece, and coils with different number of windings were tested. The influence of these parameters was monitored on the maximum strain of the free bulged parts. The analysis of the results obtained for different configurations of the flat spiral coils allowed the selection of the significant parameters that influenced the electromagnetic forming process of the Al 99.0 flat workpiece, which aimed to elaborate the mathematical model and to optimize the investigated process

    Monitoring the technological processes in the wood industry in order to make them more efficient through technical overhauling

    No full text
    Of many techniques that are used to optimize production and costs, the studies conducted within a profile company lead to our choice for testing the 6Sigma method (the most used method in the automotive industry) in view of the economic efficiency applied in the wood Industry company. This method measures how many flaws exist in a process and determines in a systematic way how to improve it by technical overhauling and eliminating or minimizing the process for efficiency. This research article aims to study the state of research on the optimization of the production process through technical overhauling for panels reconstituted from solid wood and ways to make production more efficient by cutting costs through technical overhauling. From preliminary research, we estimate that all the items founded and others that will result from further research will result in a significant decrease in production costs that are reflected in the cost of the finished product and consequently in increasing the yield of the company by maximizing its profit. At the same time it may be the basis of future research studies in the field. The easier it is to maximize profits, the lower the operating costs are and the higher recovery rate of investments are, that will result a change in the operating mode: “working smarter not harder”

    Analysis of forming forces at SPIF using Taguchi method

    No full text
    Incremental sheet metal forming process has seen one of the highest increases in diversity in the last years. Single point incremental forming (SPIF) has become more attractive due to multiple benefits it possesses over other conventional cold forming processes such as deep-drawing. However, the process has yet to arise in the large-scale industrial implementation because of its drawbacks such as high production time and low accuracy, which lead to prototype production. A very important aspect for this manufacturing process is the analysis of the form-ing forces in terms of process energy especially when using industrial robots. The aim of this paper is to investigate the influence of material and vertical step over the forming forces. Thus, aluminum and steel sheets with a thickness of 0,8mm were incrementally deformed as a truncated cone with an angle of 60°, at a depth of 30mm. Experiments were performed using a KUKA KR 210-2 robot which allows to measure the forces using a piezoresistive sensor. After performing the analysis of the forming forces using the Taguchi method, it can be observed that the material has the highest influence

    Magnetite Oxide Nanomaterial Used for Lead Ions Removal from Industrial Wastewater

    No full text
    The aim of this article is to present a nonconventional method for the efficient removal of lead ions from industrial wastewater. For this purpose, magnetite nanomaterial was used, which was very easily separated from the wastewater at the end of the treatment due to its magnetic properties. Currently, nanotechnology is an efficient and inexpensive manner that is being researched for wastewater treatment. Additionally, iron oxide nanoparticles are widely used to remove heavy metal ions from water due to their special properties. The experimental results detailed in this article show the influence of pH and contact time on the process of adsorption of lead ions from wastewater. The magnetite nanomaterial had its maximum efficiency of speed when the wastewater had pH 6. At a lower pH, the highest treatment efficiency was over 85%, and the required contact time has doubled. When the pH increases above 6, the precipitation process occurs. Langmuir and Freundlich models were used to describe the adsorption process
    corecore