2 research outputs found

    Study of the Effect of the Use of Asphalt Binders Modified with Polymer Fibres from End-of-Life Tyres (ELT) on the Mechanical Properties of Hot Mix Asphalt at Different Operating Temperatures

    No full text
    Processing of end-of-life tyres (ELT) produces polymer fibres (PFELT) as a by-product. PFELT currently presents a challenge to the recycling industry, due to the increasing numbers of ELT and lack of alternatives for the re-use of this material. The object of this investigation was to propose an alternative for re-using PFELT, in order to improve the performance properties of hot mix asphalt (HMA). This study enabled us to understand the relation between the addition of polymer fibre to the aggregate-binder matrix of the HMA in depth, as well as its effects on the mechanical properties of the resulting asphalt mix. To do this, we first made a physical and chemical characterization of the PFELT (TGA, SEM, polarized light, and fluorescence microscopy), establishing a modification methodology using two asphalt binders (CA-24 and CA-14) and three PFELT contents (0.1%, 0.3%, and 0.5%). The HMA was designed using the Marshall method. The mechanical performance of the HMA was evaluated in a range of operating temperatures, from −10 °C to 50 °C, observing the following properties: (1) resistance to thermal cracking; (2) stiffness modulus; (3) indirect tensile strength; and (4) resistance to permanent deformation. The results show that the addition of 0.3% and 0.5% of PFELT to the asphalt binder significantly improved the mechanical performance properties of the mixes studied, with a greater effect at high operating temperatures; the resistance to permanent deformation increased by more than 30%

    Effect of a New Additive Based on Textile Fibres from End-of-Life Tyres (ELT) on the Mechanical Properties of Stone Mastic Asphalt

    No full text
    Stone Mastic Asphalts (SMA) are asphalt mixes with discontinuous granulometry and a high content of asphalt binder. In order to prevent draindown of the asphalt binder and ensure good performance, these mixes must be strengthened with cellulose or mineral fibres and/or polymer additives. This study was designed to evaluate the effect of a granular additive based on waste tyre textile fibres (WTTF), developed as a replacement for cellulose commercial additives in SMA mixes. Use of the WTTF-based additive will encourage the development of sustainable mixes by recycling a by-product of end-of-life tyres (ELT), which currently constitute a major environmental problem around the world. To this end, in the present experimental study we evaluated the replacement of cellulose-based commercial fibre with different percentages of WTTF-based additive (0%, 50%, 75%, 100%) in an SMA asphalt mix. The following design and performance properties were evaluated: resistance to cracking, stiffness modulus, sensitivity to moisture, and resistance to permanent deformation. The results indicated that replacing 100% of the cellulose commercial additive in the SMA mix by the WTTF-based additive allowed the mix to meet its design properties and showed good performance in the mechanical properties evaluated, with behaviour similar to that of the reference SMA mix
    corecore