3 research outputs found

    Lethal Influenza Virus Infection in Macaques Is Associated with Early Dysregulation of Inflammatory Related Genes

    Get PDF
    The enormous toll on human life during the 1918–1919 Spanish influenza pandemic is a constant reminder of the potential lethality of influenza viruses. With the declaration by the World Health Organization of a new H1N1 influenza virus pandemic, and with continued human cases of highly pathogenic H5N1 avian influenza virus infection, a better understanding of the host response to highly pathogenic influenza viruses is essential. To this end, we compared pathology and global gene expression profiles in bronchial tissue from macaques infected with either the reconstructed 1918 pandemic virus or the highly pathogenic avian H5N1 virus A/Vietnam/1203/04. Severe pathology was observed in respiratory tissues from 1918 virus-infected animals as early as 12 hours after infection, and pathology steadily increased at later time points. Although tissues from animals infected with A/Vietnam/1203/04 also showed clear signs of pathology early on, less pathology was observed at later time points, and there was evidence of tissue repair. Global transcriptional profiles revealed that specific groups of genes associated with inflammation and cell death were up-regulated in bronchial tissues from animals infected with the 1918 virus but down-regulated in animals infected with A/Vietnam/1203/04. Importantly, the 1918 virus up-regulated key components of the inflammasome, NLRP3 and IL-1β, whereas these genes were down-regulated by A/Vietnam/1203/04 early after infection. TUNEL assays revealed that both viruses elicited an apoptotic response in lungs and bronchi, although the response occurred earlier during 1918 virus infection. Our findings suggest that the severity of disease in 1918 virus-infected macaques is a consequence of the early up-regulation of cell death and inflammatory related genes, in which additive or synergistic effects likely dictate the severity of tissue damage

    Nucleolar Relocalization of RBM14 by Influenza A Virus NS1 Protein

    No full text
    Influenza A virus (IAV) and respiratory syncytial virus (RSV) present major global disease burdens. There are high economic costs associated with morbidity as well as significant mortality rates, especially in developing countries, in children, and in the elderly. There are currently limited therapeutic options for these viruses, which underscores the need for novel research into virus biology that may lead to the discovery of new therapeutic approaches. This work extends existing research into host factors involved in virus replication and explores the interaction between IAV and one such host factor, RBM14. Further study to fully characterize this interaction may elucidate novel mechanisms used by the virus during its replication cycle and open new avenues for understanding virus biology.Viruses utilize a number of host factors in order to carry out their replication cycles. Influenza A virus (IAV) and human respiratory syncytial virus (RSV) both infect the tissues of the respiratory tract, and as such we hypothesize that they might require similar host factors. Several published genome-wide screens have identified putative IAV host factors; however, there is significant discordance between their hits. In order to build on this work, we integrated a variety of “OMICS” data sources using two complementary network analyses, yielding 51 genes enriched for both IAV and RSV replication. We designed a targeted small interfering RNA (siRNA)-based assay to screen these genes against IAV under robust conditions and identified 13 genes supported by two IAV subtypes in both primary and transformed human lung cells. One of these hits, RNA binding motif 14 (RBM14), was validated as a required host factor and furthermore was shown to relocalize to the nucleolus upon IAV infection but not with other viruses. Additionally, the IAV NS1 protein is both necessary and sufficient for RBM14 relocalization, and relocalization also requires the double-stranded RNA (dsRNA) binding capacity of NS1. This work reports the discovery of a new host requirement for IAV replication and exposes a novel example of interplay between IAV NS1 and the host protein, RBM14

    The Alpha/Beta Interferon Receptor Provides Protection against Influenza Virus Replication but Is Dispensable for Inflammatory Response Signaling

    No full text
    The innate immune response provides the first line of defense against foreign pathogens by responding to molecules that are a signature of a pathogenic infection. Certain RNA viruses, such as influenza virus, produce double-stranded RNA as an intermediate during the replication life cycle, which activates pathogen recognition receptors capable of inducing interferon production. By engaging interferon receptors, interferon activates the JAK-STAT pathway and results in the positive feedback of interferon production, amplifying the response to viral infection. To examine how deficiencies in interferon signaling affect the cellular response to infection, we performed influenza virus infections of mouse embryonic fibroblasts lacking the alpha/beta interferon receptor, the gamma interferon receptor, or both. In the absence of the alpha/beta interferon receptor, we observed increased viral replication but decreased activation of PKR, Stat1, and NF-ÎşB; the presence or absence of the gamma interferon receptor did not exhibit discernible differences in these readouts. Analysis of gene expression profiles showed that while cells lacking the alpha/beta interferon receptor exhibited decreased levels of transcription of antiviral genes, genes related to inflammatory and apoptotic responses were transcribed to levels similar to those of cells containing the receptor. These results indicate that while the alpha/beta interferon receptor is needed to curb viral replication, it is dispensable for the induction of certain inflammatory and apoptotic genes. We have identified potential pathways, via interferon regulatory factor 3 (IRF3) activation or Hoxa13 , Polr2a , Nr4a1 , or Ing1 induction, that contribute to this redundancy. This study illustrates another way in which the host has evolved to establish several overlapping mechanisms to respond to viral infections
    corecore