50 research outputs found

    Tissue Microenvironments Define and Get Reinforced by Macrophage Phenotypes in Homeostasis or during Inflammation, Repair and Fibrosis

    Get PDF
    Current macrophage phenotype classifications are based on distinct in vitro culture conditions that do not adequately mirror complex tissue environments. In vivo monocyte progenitors populate all tissues for immune surveillance which supports the maintenance of homeostasis as well as regaining homeostasis after injury. Here we propose to classify macrophage phenotypes according to prototypical tissue environments, e.g. as they occur during homeostasis as well as during the different phases of (dermal) wound healing. In tissue necrosis and/or infection, damage- and/or pathogen-associated molecular patterns induce proinflammatory macrophages by Toll-like receptors or inflammasomes. Such classically activated macrophages contribute to further tissue inflammation and damage. Apoptotic cells and antiinflammatory cytokines dominate in postinflammatory tissues which induce macrophages to produce more antiinflammatory mediators. Similarly, tumor-associated macrophages also confer immunosuppression in tumor stroma. Insufficient parenchymal healing despite abundant growth factors pushes macrophages to gain a profibrotic phenotype and promote fibrocyte recruitment which both enforce tissue scarring. Ischemic scars are largely devoid of cytokines and growth factors so that fibrolytic macrophages that predominantly secrete proteases digest the excess extracellular matrix. Together, macrophages stabilize their surrounding tissue microenvironments by adapting different phenotypes as feed-forward mechanisms to maintain tissue homeostasis or regain it following injury. Furthermore, macrophage heterogeneity in healthy or injured tissues mirrors spatial and temporal differences in microenvironments during the various stages of tissue injury and repair. Copyright (C) 2012 S. Karger AG, Base

    CD4+ T Cell Effects on CD8+ T Cell Location Defined Using Bioluminescence

    Get PDF
    T lymphocytes of the CD8+ class are critical in delivering cytotoxic function and in controlling viral and intracellular infections. These cells are β€œhelped” by T lymphocytes of the CD4+ class, which facilitate their activation, clonal expansion, full differentiation and the persistence of memory. In this study we investigated the impact of CD4+ T cells on the location of CD8+ T cells, using antibody-mediated CD4+ T cell depletion and imaging the antigen-driven redistribution of bioluminescent CD8+ T cells in living mice. We documented that CD4+ T cells influence the biodistribution of CD8+ T cells, favoring their localization to abdominal lymph nodes. Flow cytometric analysis revealed that this was associated with an increase in the expression of specific integrins. The presence of CD4+ T cells at the time of initial CD8+ T cell activation also influences their biodistribution in the memory phase. Based on these results, we propose the model that one of the functions of CD4+ T cell β€œhelp” is to program the homing potential of CD8+ T cells

    Liver Is Able to Activate NaΓ―ve CD8+ T Cells with Dysfunctional Anti-Viral Activity in the Murine System

    Get PDF
    The liver possesses distinct tolerogenic properties because of continuous exposure to bacterial constituents and nonpathogenic food antigen. The central immune mediators required for the generation of effective immune responses in the liver environment have not been fully elucidated. In this report, we demonstrate that the liver can indeed support effector CD8+ T cells during adenovirus infection when the T cells are primed in secondary lymphoid tissues. In contrast, when viral antigen is delivered predominantly to the liver via intravenous (IV) adenovirus infection, intrahepatic CD8+ T cells are significantly impaired in their ability to produce inflammatory cytokines and lyse target cells. Additionally, intrahepatic CD8+ T cells generated during IV adenovirus infection express elevated levels of PD-1. Notably, lower doses of adenovirus infection do not rescue the impaired effector function of intrahepatic CD8+ T cell responses. Instead, intrahepatic antigen recognition limits the generation of potent anti-viral responses at both priming and effector stages of the CD8+ T cell response and accounts for the dysfunctional CD8+ T cell response observed during IV adenovirus infection. These results also implicate that manipulation of antigen delivery will facilitate the design of improved vaccination strategies to persistent viral infection

    Immune mechanisms in malaria: new insights in vaccine development.

    Full text link
    Early data emerging from the first phase 3 trial of a malaria vaccine are raising hopes that a licensed vaccine will soon be available for use in endemic countries, but given the relatively low efficacy of the vaccine, this needs to be seen as a major step forward on the road to a malaria vaccine rather than as arrival at the final destination. The focus for vaccine developers now moves to the next generation of malaria vaccines, but it is not yet clear what characteristics these new vaccines should have or how they can be evaluated. Here we briefly review the epidemiological and immunological requirements for malaria vaccines and the recent history of malaria vaccine development and then put forward a manifesto for future research in this area. We argue that rational design of more effective malaria vaccines will be accelerated by a better understanding of the immune effector mechanisms involved in parasite regulation, control and elimination

    Structural geology of the Tanami Region

    Full text link
    corecore