240 research outputs found

    Voronoi binding site models: Calculation of binding modes and influence of drug binding data accuracy

    Full text link
    A new and accurate method for calculating the geometrically allowed modes of binding of a ligand molecule to a Voronoi site model is reported. It is shown that the feasibility of the binding of a group of atoms to a Voronoi site reduces to a simple set of linear and quadratic inequalities and quadratic equalities which can be solved by minimization of a simple function. Newton's numerical method of solution coupled to a line search proved to be successful. Moreover, we have developed efficient molecular and site data bases to discard quickly infeasible binding modes without time-consuming numerical calculation. The method is tested with a data set consisting of the binding constants for a series of biphenyls binding to prealbumin. After determination of the conformation space of the molecules and proposal of a Voronoi site geometry, the geometrically feasible modes are calculated and the energy interaction parameters determined to fit the observed binding energies to the site within experimental error ranges. We actually allowed these ranges to vary in order to study the influence of their broadness on the site geometry and found that as they increase, one can first model the receptor as a three-region site then as a single region site, but never as a two-region site.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/38280/1/540100509_ftp.pd

    Temporal and Spatial Impact of Human Cadaver Decomposition on Soil Bacterial and Arthropod Community Structure and Function

    Get PDF
    As vertebrate carrion decomposes, there is a release of nutrient-rich fluids into theunderlying soil, which can impact associated biological community structure andfunction. How these changes alter soil biogeochemical cycles is relatively unknown and may prove useful in the identification of carrion decomposition islands that have long lasting, focal ecological effects. This study investigated the spatial (0, 1, and 5 m) and temporal (3–732 days) dynamics of human cadaver decomposition on soil bacterial and arthropod community structure and microbial function. We observed strong evidence of a predictable response to cadaver decomposition that varies over space for soil bacterial and arthropod community structure, carbon (C) mineralization and microbial substrate utilization patterns. In the presence of a cadaver (i.e., 0 m samples), the relative abundance of Bacteroidetes and Firmicutes was greater, while the relative abundance of Acidobacteria, Chloroflexi, Gemmatimonadetes, and Verrucomicrobia was lower when compared to samples at 1 and 5 m. Micro-arthropods were more abundant (15 to 17-fold) in soils collected at 0 m compared to either 1 or 5 m, but overall, micro-arthropod community composition was unrelated to either bacterial community composition or function. Bacterial community structure and microbial function also exhibited temporal relationships, whereas arthropod community structure did not. Cumulative precipitation was more effective in predicting temporal variations in bacterial abundance and microbial activity than accumulated degree days. In the presence of the cadaver (i.e., 0 m samples), the relative abundance of Actinobacteria increased significantly with cumulative precipitation. Furthermore, soil bacterial communities and C mineralization were sensitive to the introduction of human cadavers as they diverged from baseline levels and did not recover completely in approximately 2 years. These data are valuable for understanding ecosystem function surrounding carrion decomposition islands and can be applicable to environmental bio-monitoring and forensic sciences

    The measurement of molecular diversity by receptor site interaction simulation

    Full text link
    The assembly of large compound libraries for the purpose of screening against various receptor targets to identify chemical leads for drug discovery programs has created a need for methods to measure the molecular diversity of such libraries. The method described here, for which we propose the acronym RESIS (for Receptor Site Interaction Simulation), relates directly to this use. A database is built of three-dimensional representations of the compounds in the library and a set of three-point three-dimensional theoretical receptor sites is generated based on putative hydrophobic and polar interactions. A series of flexible, three-dimensional searches is then performed over the database, using each of the theoretical sites as the basis for one such search. The resulting pattern of hits across the grid of theoretical receptor sites provides a measure of the molecular diversity of the compound library. This can be conveniently displayed as a density map which provides a readily comprehensible visual impression of the library diversity characteristics. A library of 7500 drug compounds derived from the CIPSLINEPC databases was characterized with respect to molecular diversity using the RESIS method. Some specific uses for the information obtained from application of the method are discussed. A comparison was made of the results from the RESIS method with those from a recently published two-dimensional approach for assessing molecular diversity using sets of compounds from the Maybridge database (MAY).Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/42964/1/10822_2004_Article_165958.pd

    Semiclassical Mechanics of the Wigner 6j-Symbol

    Full text link
    The semiclassical mechanics of the Wigner 6j-symbol is examined from the standpoint of WKB theory for multidimensional, integrable systems, to explore the geometrical issues surrounding the Ponzano-Regge formula. The relations among the methods of Roberts and others for deriving the Ponzano-Regge formula are discussed, and a new approach, based on the recoupling of four angular momenta, is presented. A generalization of the Yutsis-type of spin network is developed for this purpose. Special attention is devoted to symplectic reduction, the reduced phase space of the 6j-symbol (the 2-sphere of Kapovich and Millson), and the reduction of Poisson bracket expressions for semiclassical amplitudes. General principles for the semiclassical study of arbitrary spin networks are laid down; some of these were used in our recent derivation of the asymptotic formula for the Wigner 9j-symbol.Comment: 64 pages, 50 figure

    Arena3D: visualizing time-driven phenotypic differences in biological systems

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elucidating the genotype-phenotype connection is one of the big challenges of modern molecular biology. To fully understand this connection, it is necessary to consider the underlying networks and the time factor. In this context of data deluge and heterogeneous information, visualization plays an essential role in interpreting complex and dynamic topologies. Thus, software that is able to bring the network, phenotypic and temporal information together is needed. Arena3D has been previously introduced as a tool that facilitates link discovery between processes. It uses a layered display to separate different levels of information while emphasizing the connections between them. We present novel developments of the tool for the visualization and analysis of dynamic genotype-phenotype landscapes.</p> <p>Results</p> <p>Version 2.0 introduces novel features that allow handling time course data in a phenotypic context. Gene expression levels or other measures can be loaded and visualized at different time points and phenotypic comparison is facilitated through clustering and correlation display or highlighting of impacting changes through time. Similarity scoring allows the identification of global patterns in dynamic heterogeneous data. In this paper we demonstrate the utility of the tool on two distinct biological problems of different scales. First, we analyze a medium scale dataset that looks at perturbation effects of the pluripotency regulator Nanog in murine embryonic stem cells. Dynamic cluster analysis suggests alternative indirect links between Nanog and other proteins in the core stem cell network. Moreover, recurrent correlations from the epigenetic to the translational level are identified. Second, we investigate a large scale dataset consisting of genome-wide knockdown screens for human genes essential in the mitotic process. Here, a potential new role for the gene <it>lsm14a </it>in cytokinesis is suggested. We also show how phenotypic patterning allows for extensive comparison and identification of high impact knockdown targets.</p> <p>Conclusions</p> <p>We present a new visualization approach for perturbation screens with multiple phenotypic outcomes. The novel functionality implemented in Arena3D enables effective understanding and comparison of temporal patterns within morphological layers, to help with the system-wide analysis of dynamic processes. Arena3D is available free of charge for academics as a downloadable standalone application from: <url>http://arena3d.org/</url>.</p
    corecore