39 research outputs found

    Facilitating fluency in adults who stutter

    Get PDF
    This scientific commentary refers to ‘Transcranial direct current stimulation over left inferior frontal cortex improves speech fluency in adults who stutter’, by Chesters et al. (doi:10.1093/brain/awy011)

    Using functional imaging to understand therapeutic effects in poststroke aphasia

    Get PDF
    PURPOSE OF REVIEW: The evidence base for the treatment of poststroke aphasia continues to grow, so too does interest in the neural mechanisms that underlie these therapy-driven improvements. Although the majority of patients respond to therapy, not all of those who do improve do so in a predictable way. Here, we review 17 of the most recent articles that have attempted to deal with this important question, dividing them into those that target speech perception and production. RECENT FINDINGS: There are many methodological differences between the studies, but some neuroimaging patterns have emerged: whether the in-scanner language task is speech perception or production, left hemisphere fronto-temporal cortex is often activated/correlated with language improvement and; right inferior frontal gyrus is frequently identified although what this represents is still hotly contested. We are concerned that many studies are not well controlled making it difficult to ascribe neuroimaging changes directly to the therapeutic intervention. SUMMARY: Encouragingly, there are many more functional imaging studies in this challenging area of research. Behaviour, either alone or paired with structural imaging data, only goes part way in explaining aphasic patients’ responses to therapy. An important emerging theme is exploring the role that nonlanguage cognitive processes play in aphasia recovery

    Transcranial direct current stimulation with functional magnetic resonance imaging: a detailed validation and operational guide [version 1; peer review: 1 approved with reservations]

    Get PDF
    Introduction: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to modulate human brain and behavioural function in both research and clinical interventions. The combination of functional magnetic resonance imaging (fMRI) with tDCS enables researchers to directly test causal contributions of stimulated brain regions, answering questions about the physiology and neural mechanisms underlying behaviour. Despite the promise of the technique, advances have been hampered by technical challenges and methodological variability between studies, confounding comparability/replicability. / Methods: Here tDCS-fMRI at 3T was developed for a series of experiments investigating language recovery after stroke. To validate the method, one healthy volunteer completed an fMRI paradigm with three conditions: (i) No-tDCS, (ii) Sham-tDCS, (iii) 2mA Anodal-tDCS. MR data were analysed in SPM12 with region-of-interest (ROI) analyses of the two electrodes and reference sites. / Results: Quality assessment indicated no visible signal dropouts or distortions introduced by the tDCS equipment. After modelling scanner drift, motion-related variance, and temporal autocorrelation, we found no field inhomogeneity in functional sensitivity metrics across conditions in grey matter and in the three ROIs. / Discussion: Key safety factors and risk mitigation strategies that must be taken into consideration when integrating tDCS into an fMRI environment are outlined. To obtain reliable results, we provide practical solutions to technical challenges and complications of the method. It is hoped that sharing these data and SOP will promote methodological replication in future studies, enhancing the quality of tDCS-fMRI application, and improve the reliability of scientific results in this field. / Conclusions: The method and data provided here provide a technically safe, reliable tDCS-fMRI procedure to obtain high quality MR data. The detailed framework of the Standard Operation Procedure SOP (https://doi.org/10.5281/zenodo.4606564) systematically reports the technical and procedural elements of our tDCS-fMRI approach, which we hope can be adopted and prove useful in future studies

    A functional dissociation of the left frontal regions that contribute to single word production tasks

    Get PDF
    Controversy surrounds the interpretation of higher activation for pseudoword compared to word reading in the left precentral gyrus and pars opercularis. Specifically, does activation in these regions reflect: (1) the demands on sublexical assembly of articulatory codes, or (2) retrieval effort because the combinations of articulatory codes are unfamiliar? Using fMRI, in 84 neurologically intact participants, we addressed this issue by comparing reading and repetition of words (W) and pseudowords (P) to naming objects (O) from pictures or sounds. As objects do not provide sublexical articulatory cues, we hypothesis that retrieval effort will be greater for object naming than word repetition/reading (which benefits from both lexical and sublexical cues); while the demands on sublexical assembly will be higher for pseudoword production than object naming. We found that activation was: (i) highest for pseudoword reading [P>O&W in the visual modality] in the anterior part of the ventral precentral gyrus bordering the precentral sulcus (vPCg/vPCs), consistent with the sublexical assembly of articulatory codes; but (ii) as high for object naming as pseudoword production [P&O>W] in dorsal precentral gyrus (dPCg) and the left inferior frontal junction (IFJ), consistent with retrieval demands and cognitive control. In addition, we dissociate the response properties of vPCg/vPCs, dPCg and IFJ from other left frontal lobe regions that are activated during single word speech production. Specifically, in both auditory and visual modalities: a central part of vPCg (head and face area) was more activated for verbal than nonverbal stimuli [P&W>O]; and the pars orbitalis and inferior frontal sulcus were most activated during object naming [O>W&P]. Our findings help to resolve a previous discrepancy in the literature, dissociate three functionally distinct parts of the precentral gyrus, and refine our knowledge of the functional anatomy of speech production in the left frontal lobe

    Dissociating the functions of three left posterior superior temporal regions that contribute to speech perception and production

    Get PDF
    Prior studies have shown that the left posterior superior temporal sulcus (pSTS) and left temporo-parietal junction (TPJ) both contribute to phonological short-term memory, speech perception and speech production. Here, by conducting a within-subjects multi-factorial fMRI study, we dissociate the response profiles of these regions and a third region - the anterior ascending terminal branch of the left superior temporal sulcus (atSTS), which lies dorsal to pSTS and ventral to TPJ. First, we show that each region was more activated by (i) 1-back matching on visually presented verbal stimuli (words or pseudowords) compared to 1-back matching on visually presented non-verbal stimuli (pictures of objects or non-objects), and (ii) overt speech production than 1-back matching, across 8 types of stimuli (visually presented words, pseudowords, objects and non-objects and aurally presented words, pseudowords, object sounds and meaningless hums). The response properties of the three regions dissociated within the auditory modality. In left TPJ, activation was higher for auditory stimuli that were non-verbal (sounds of objects or meaningless hums) compared to verbal (words and pseudowords), irrespective of task (speech production or 1-back matching). In left pSTS, activation was higher for non-semantic stimuli (pseudowords and hums) than semantic stimuli (words and object sounds) on the dorsal pSTS surface (dpSTS), irrespective of task. In left atSTS, activation was not sensitive to either semantic or verbal content. The contrasting response properties of left TPJ, dpSTS and atSTS was cross-validated in an independent sample of 59 participants, using region-by-condition interactions. We also show that each region participates in non-overlapping networks of frontal, parietal and cerebellar regions. Our results challenge previous claims about functional specialisation in the left posterior superior temporal lobe and motivate future studies to determine the timing and directionality of information flow in the brain networks involved in speech perception and production

    Lesions that do or do not impair digit span: a study of 816 stroke survivors

    Get PDF
    Prior studies have reported inconsistency in the lesion sites associated with verbal short-term memory impairments. Here we asked: How many different lesion sites can account for selective impairments in verbal short-term memory that persist over time, and how consistently do these lesion sites impair verbal short-term memory? We assessed verbal short-term memory impairments using a forward digit span task from the Comprehensive Aphasia Test. First, we identified the incidence of digit span impairments in a sample of 816 stroke survivors (541 males/275 females; age at stroke onset 56 ± 13 years; time post-stroke 4.4 ± 5.2 years). Second, we studied the lesion sites in a subgroup of these patients (n = 39) with left hemisphere damage and selective digit span impairment-defined as impaired digit span with unimpaired spoken picture naming and spoken word comprehension (tests of speech production and speech perception, respectively). Third, we examined how often these lesion sites were observed in patients who either had no digit span impairments or digit span impairments that co-occurred with difficulties in speech perception and/or production tasks. Digit span impairments were observed in 222/816 patients. Almost all (199/222 = 90%) had left hemisphere damage to five small regions in basal ganglia and/or temporo-parietal areas. Even complete damage to one or more of these five regions was not consistently associated with persistent digit span impairment. However, when the same regions were spared, only 5% (23/455) presented with digit span impairments. These data suggest that verbal short-term memory impairments are most consistently associated with damage to left temporo-parietal and basal ganglia structures. Sparing of these regions very rarely results in persistently poor verbal short-term memory. These findings have clinical implications for predicting recovery of verbal short-term memory after stroke

    Randomized trial of iReadMore word reading training and brain stimulation in central alexia

    Get PDF
    Central alexia is an acquired reading disorder co-occurring with a generalized language deficit (aphasia). We tested the impact of a novel training app, ‘iReadMore’, and anodal transcranial direct current stimulation of the left inferior frontal gyrus, on word reading ability in central alexia. The trial was registered at www.clinicaltrials.gov (NCT02062619). Twenty-one chronic stroke patients with central alexia participated. A baseline-controlled, repeated-measures, crossover design was used. Participants completed two 4-week blocks of iReadMore training, one with anodal stimulation and one with sham stimulation (order counterbalanced between participants). Each block comprised 34 h of iReadMore training and 11 stimulation sessions. Outcome measures were assessed before, between and after the two blocks. The primary outcome measures were reading ability for trained and untrained words. Secondary outcome measures included semantic word matching, sentence reading, text reading and a self-report measure. iReadMore training resulted in an 8.7% improvement in reading accuracy for trained words (95% confidence interval 6.0 to 11.4; Cohen’s d = 1.38) but did not generalize to untrained words. Reaction times also improved. Reading accuracy gains were still significant (but reduced) 3 months after training cessation. Anodal transcranial direct current stimulation (compared to sham), delivered concurrently with iReadMore, resulted in a 2.6% (95% confidence interval −0.1 to 5.3; d = 0.41) facilitation for reading accuracy, both for trained and untrained words. iReadMore also improved performance on the semantic word-matching test. There was a non-significant trend towards improved self-reported reading ability. However, no significant changes were seen at the sentence or text reading level. In summary, iReadMore training in post-stroke central alexia improved reading ability for trained words, with good maintenance of the therapy effect. Anodal stimulation resulted in a small facilitation (d = 0.41) of learning and also generalized to untrained items

    Damage to Broca's area does not contribute to long-term speech production outcome after stroke

    Get PDF
    Broca’s area in the posterior half of the left inferior frontal gyrus has long been thought to be critical for speech production. The current view is that long-term speech production outcome in patients with Broca’s area damage is best explained by the combination of damage to Broca’s area and neighbouring regions including the underlying white matter, which was also damaged in Paul Broca’s two historic cases. Here, we dissociate the effect of damage to Broca’s area from the effect of damage to surrounding areas by studying long-term speech production outcome in 134 stroke survivors with relatively circumscribed left frontal lobe lesions that spared posterior speech production areas in lateral inferior parietal and superior temporal association cortices. Collectively, these patients had varying degrees of damage to one or more of nine atlas-based grey or white matter regions: Brodmann areas 44 and 45 (together known as Broca’s area), ventral premotor cortex, primary motor cortex, insula, putamen, the anterior segment of the arcuate fasciculus, uncinate fasciculus and frontal aslant tract. Spoken picture description scores from the Comprehensive Aphasia Test were used as the outcome measure. Multiple regression analyses allowed us to tease apart the contribution of other variables influencing speech production abilities such as total lesion volume and time post-stroke. We found that, in our sample of patients with left frontal damage, long-term speech production impairments (lasting beyond 3 months post-stroke) were solely predicted by the degree of damage to white matter, directly above the insula, in the vicinity of the anterior part of the arcuate fasciculus, with no contribution from the degree of damage to Broca’s area (as confirmed with Bayesian statistics). The effect of white matter damage cannot be explained by a disconnection of Broca’s area, because speech production scores were worse after damage to the anterior arcuate fasciculus with relative sparing of Broca’s area than after damage to Broca’s area with relative sparing of the anterior arcuate fasciculus. Our findings provide evidence for three novel conclusions: (i) Broca’s area damage does not contribute to long-term speech production outcome after left frontal lobe strokes; (ii) persistent speech production impairments after damage to the anterior arcuate fasciculus cannot be explained by a disconnection of Broca’s area; and (iii) the prior association between persistent speech production impairments and Broca’s area damage can be explained by co-occurring white matter damage, above the insula, in the vicinity of the anterior part of the arcuate fasciculus

    Better long-term speech outcomes in stroke survivors who received early clinical speech and language therapy: What's driving recovery?

    Get PDF
    Establishing whether speech and language therapy after stroke has beneficial effects on speaking ability is challenging because of the need to control for multiple non-therapy factors known to influence recovery. We investigated how speaking ability at three time points post-stroke differed in patients who received varying amounts of clinical therapy in the first month post-stroke. In contrast to prior studies, we factored out variance from: initial severity of speaking impairment, amount of later therapy, and left and right hemisphere lesion size and site. We found that speaking ability at one month post-stroke was significantly better in patients who received early therapy (n = 79), versus those who did not (n = 64), and the number of hours of early therapy was positively related to recovery at one year post-stroke. We offer two non-mutually exclusive interpretations of these data: (1) patients may benefit from the early provision of self-management strategies; (2) therapy is more likely to be provided to patients who have a better chance of recovery (e.g., poor physical and/or mental health may impact suitability for therapy and chance of recovery). Both interpretations have implications for future studies aiming to predict individual patients' speech outcomes after stroke, and their response to therapy

    Clinical Effectiveness of the Queen Square Intensive Comprehensive Aphasia Service for Patients With Poststroke Aphasia

    Get PDF
    BACKGROUND AND PURPOSE: Poststroke aphasia has a major impact on peoples' quality of life. Speech and language therapy interventions work, especially in high doses, but these doses are rarely achieved outside of research studies. Intensive Comprehensive Aphasia Programs (ICAPs) are an option to deliver high doses of therapy to people with aphasia over a short period of time. METHODS: Forty-six people with aphasia in the chronic stage poststroke completed the ICAP over a 3-week period, attending for 15 days and averaging 6 hours of therapy per day. Outcome measures included the Comprehensive Aphasia Test, an impairment-based test of the 4 main domains of language (speaking, writing, auditory comprehension, and reading) which was measured at 3 time points (baseline, immediately posttreatment at 3 weeks and follow-up at 12-week post-ICAP); and, the Communicative Effectiveness Index, a carer-reported measure of functional communication skills collected at baseline and 12 weeks. RESULTS: A 2-way repeated measures multivariate ANOVA was conducted. We found a significant domain-by-time interaction, F=12.7, P<0.0005, indicating that the ICAP improved people with aphasia's language scores across all 4 domains, with the largest gains in speaking (Cohen's d=1.3). All gains were maintained or significantly improved further at 12-week post-ICAP. Importantly, patients' functional communication, as indexed by changes on the Communicative Effectiveness Index, also significantly improved at 12-week post-ICAP, t=5.4, P<0.0005, also with a large effect size (Cohen's d=0.9). CONCLUSIONS: People with aphasia who participated in the Queen Square ICAP made large and clinically meaningful gains on both impairment-based and functional measures of language. Gains were sustained and in some cases improved further over the subsequent 12 weeks
    corecore