5 research outputs found

    Oxidative addition of carbon-fluorine and carbon-oxygen bonds to Al(I)

    Get PDF
    Addition of fluoroarenes, fluoroalkanes or benzofuran to [{(2,6-iPr2C6H3NCMe)2CH}Al] results in facile oxidative addition of either a C–F or C–O bond to the Al(I) centre

    Magnesium, zinc, aluminium and gallium hydride complexes of the transition metals.

    No full text
    The preparation and applications of heterobimetallic complexes continue to occupy researchers in the fields of organometallic, main group, and coordination chemistry. This interest stems from the promise these complexes hold as precursors to materials, reagents in synthesis and as new catalysis. Here we survey and organise the state-of-the-art understanding of the TM-H-M linkage (M = Mg, Zn, Al, Ga). We discuss the structure and bonding in these complexes, their known reactivity, and their largely unrealised potential in catalysis

    Heterobimetallic rebound: a mechanism for diene-to-alkyne isomerization with M-Zr hydride complexes (M = Al, Zn, and Mg)

    No full text
    The reaction of a series of M·Zr heterobimetallic hydride complexes with dienes and alkynes has been investigated (M = Al, Zn, and Mg). Reaction of M·Zr with 1,5-cyclooctadiene led to diene isomerization to 1,3-cyclooctadiene, but for M = Zn also result in an on-metal diene-to-alkyne isomerization. The resulting cyclooctyne fragment is trapped between Zr and Zn metals in a heterobimetallic species that does not form for M = Mg or Al. The scope of diene isomerization and alkyne trapping has been explored leading to the isolation of three new heterobimetallic slipped metallocyclopropene complexes. The mechanism of diene-to-alkyne isomerization was investigated through kinetics. While the reaction is first-order in Zn·Zr at high diene concentration and proceeds with ΔH‡ = +33.6 ± 0.7 kcal mol−1 , ΔS‡ = +23.2 ± 1.7 cal mol−1 K−1 , and ΔG⧧ 298 K = +26.7 ± 1.2 kcal mol−1 , the rate is dependent on the nature of the diene. The positive activation entropy is suggestive of involvement of a dissociative step. On the basis of DFT calculations, a heterobimetallic rebound mechanism for diene-to-alkyne isomerization has been proposed. This mechanism explains the origin of heterobimetallic control over selectivity: Mg---Zr complexes are too strongly bound to generate reactive fragments, while Al---Zr complexes are too weakly bound to compensate for the contrathermodynamic isomerization process. Zn---Zr complexes have favorable energetics for both dissociation and trapping steps

    Inhibition of the metastatic spread and growth of B16-BL6 murine melanoma by a synthetic matrix metalloproteinase inhibitor.

    No full text
    The synthetic matrix metalloproteinase inhibitor batimastat was tested for its ability to inhibit growth and metastatic spread of the B16-BL6 murine melanoma in syngeneic C57BL/6N mice. Intraperitoneal administration of batimastat resulted in a significant inhibition in the number of lung colonies produced by B16-BL6 cells injected i.v. The effect of batimastat on spontaneous metastases was examined in mice inoculated in the hind footpad with B16-BL6 melanoma. The primary tumor was removed surgically after 26-28 days. Batimastat was administered twice a day from day 14 to day 28 (pre-surgery) or from day 26 to day 44 (post-surgery). With both protocols, the median number of lung metastases was not significantly affected, but there was a significant reduction in the weight of the metastases. Finally, the effect of batimastat was examined on s.c. growth of B16-BL6 melanoma. Batimastat administered daily, starting at day of tumor transplantation, resulted in a significant growth delay, whereas treatment starting at advanced stage tumor only reduced tumor growth marginally. Our results indicate that a matrix metalloproteinase inhibitor can not only prevent the colonization of secondary organs by B16-BL6 cells but also limit the growth of solid tumors
    corecore