345 research outputs found
On the connection between the intergalactic medium and galaxies: the H I–galaxy cross-correlation at z ≲ 1
We present a new optical spectroscopic survey of 1777 ‘star-forming’ (‘SF’) and 366 ‘non-star-forming’ (‘non-SF’) galaxies at redshifts z ∼ 0-1 (2143 in total), 22 AGN and 423 stars, observed by instruments such as the Deep Imaging Multi-Object Spectrograph, the Visible Multi-Object Spectrograph and the Gemini Multi-Object Spectrograph, in three fields containing five quasi-stellar objects (QSOs) with Hubble Space Telescope (HST) ultraviolet spectroscopy. We also present a new spectroscopic survey of 173 ‘strong’ (1014 ≤ NHI≲ 1017 cm−2) and 496 ‘weak’ (1013 ≲ NHI 50 per cent of ‘weak’ H i systems reside within galaxy voids (hence not correlated with galaxies), and are confined in dark matter haloes of masses smaller than those hosting ‘strong’ systems and/or galaxies. We speculate that H i systems within galaxy voids might still be evolving in the linear regime even at scales ≲2 Mpc
Gas Accretion via Lyman Limit Systems
In cosmological simulations, a large fraction of the partial Lyman limit
systems (pLLSs; 16<log N(HI)<17.2) and LLSs (17.2log N(HI)<19) probes
large-scale flows in and out of galaxies through their circumgalactic medium
(CGM). The overall low metallicity of the cold gaseous streams feeding galaxies
seen in these simulations is the key to differentiating them from metal rich
gas that is either outflowing or being recycled. In recent years, several
groups have empirically determined an entirely new wealth of information on the
pLLSs and LLSs over a wide range of redshifts. A major focus of the recent
research has been to empirically determine the metallicity distribution of the
gas probed by pLLSs and LLSs in sizable and representative samples at both low
(z2) redshifts. Here I discuss unambiguous evidence for
metal-poor gas at all z probed by the pLLSs and LLSs. At z<1, all the pLLSs and
LLSs so far studied are located in the CGM of galaxies with projected distances
<100-200 kpc. Regardless of the exact origin of the low-metallicity pLLSs/LLSs,
there is a significant mass of cool, dense, low-metallicity gas in the CGM that
may be available as fuel for continuing star formation in galaxies over cosmic
time. As such, the metal-poor pLLSs and LLSs are currently among the best
observational evidence of cold, metal-poor gas accretion onto galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springe
An Introduction to Gas Accretion onto Galaxies
Evidence for gas accretion onto galaxies can be found throughout the
universe. In this chapter, I summarize the direct and indirect signatures of
this process and discuss the primary sources. The evidence for gas accretion
includes the star formation rates and metallicities of galaxies, the evolution
of the cold gas content of the universe with time, numerous indirect indicators
for individual galaxies, and a few direct detections of inflow. The primary
sources of gas accretion are the intergalactic medium, satellite gas and
feedback material. There is support for each of these sources from observations
and simulations, but the methods with which the fuel ultimately settles in to
form stars remain murky.Comment: 14 pages, 5 figures, Invited review to appear in Gas Accretion onto
Galaxies, Astrophysics and Space Science Library, eds. A. J. Fox & R. Dav\'e,
to be published by Springe
Gas Accretion in Star-Forming Galaxies
Cold-mode gas accretion onto galaxies is a direct prediction of LCDM
simulations and provides galaxies with fuel that allows them to continue to
form stars over the lifetime of the Universe. Given its dramatic influence on a
galaxy's gas reservoir, gas accretion has to be largely responsible for how
galaxies form and evolve. Therefore, given the importance of gas accretion, it
is necessary to observe and quantify how these gas flows affect galaxy
evolution. However, observational data have yet to conclusively show that gas
accretion ubiquitously occurs at any epoch. Directly detecting gas accretion is
a challenging endeavor and we now have obtained a significant amount of
observational evidence to support it. This chapter reviews the current
observational evidence of gas accretion onto star-forming galaxies.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dav\'e, to be published by
Springer. This chapter includes 22 pages with 7 Figure
The Circumgalactic Medium in Massive Halos
This chapter presents a review of the current state of knowledge on the cool
(T ~ 1e4 K) halo gas content around massive galaxies at z ~ 0.2-2. Over the
last decade, significant progress has been made in characterizing the cool
circumgalactic gas in massive halos of Mh ~ 1e12-1e14 Msun at intermediate
redshifts using absorption spectroscopy. Systematic studies of halo gas around
massive galaxies beyond the nearby universe are made possible by large
spectroscopic samples of galaxies and quasars in public archives. In addition
to accurate and precise constraints for the incidence of cool gas in massive
halos, detailed characterizations of gas kinematics and chemical compositions
around massive quiescent galaxies at z ~ 0.5 have also been obtained. Combining
all available measurements shows that infalling clouds from external sources
are likely the primary source of cool gas detected at d >~ 100 kpc from massive
quiescent galaxies. The origin of the gas closer in is currently less certain,
but SNe Ia driven winds appear to contribute significantly to cool gas found at
d < 100 kpc. In contrast, cool gas observed at d <~ 200 kpc from luminous
quasars appears to be intimately connected to quasar activities on parsec
scales. The observed strong correlation between cool gas covering fraction in
quasar host halos and quasar bolometric luminosity remains a puzzle. Combining
absorption-line studies with spatially-resolved emission measurements of both
gas and galaxies is the necessary next step to address remaining questions.Comment: 29 pages, 7 figures, invited review to appear in "Gas Accretion onto
Galaxies", Astrophysics and Space Science Library, eds. A. Fox & R. Dave, to
be published by Springe
Time variation of the fine structure constant in the early universe and the Bekenstein model
We calculate bounds on the variation of the fine structure constant at the
time of primordial nucleosynthesis and at the time of neutral hydrogen
formation. We use these bounds and other bounds from the late universe to test
Bekenstein model. We modify the Kawano code, CAMB and CosmoMC in order to
include the possible variation of the fine structure constant. We use
observational primordial abundances of \De, \He and \Li, recent data from
the Cosmic Microwave Background and the 2dFGRS power spectrum, to obtain bounds
on the variation of . We calculate a piecewise solution to the scalar
field equation of Bekenstein model in two different regimes; i) matter and
radiation, ii) matter and cosmological constant. We match both solutions with
appropriate boundary conditions. We perform a statistical analysis using the
bounds obtained from the early universe and other bounds from the late universe
to constrain the free parameters of the model. Results are consistent with no
variation of in the early universe. Limits on are
inconsistent with the scale length of the theory being larger than Planck
scale. In order to fit all observational and experimental data, the assumption
implied in Bekenstein's model has to be relaxed.Comment: 13 pages, 8 figures,version accepted to be published in Astronomy and
Astrophysic
Observational Diagnostics of Gas Flows: Insights from Cosmological Simulations
Galactic accretion interacts in complex ways with gaseous halos, including
galactic winds. As a result, observational diagnostics typically probe a range
of intertwined physical phenomena. Because of this complexity, cosmological
hydrodynamic simulations have played a key role in developing observational
diagnostics of galactic accretion. In this chapter, we review the status of
different observational diagnostics of circumgalactic gas flows, in both
absorption (galaxy pair and down-the-barrel observations in neutral hydrogen
and metals; kinematic and azimuthal angle diagnostics; the cosmological column
density distribution; and metallicity) and emission (Lya; UV metal lines; and
diffuse X-rays). We conclude that there is no simple and robust way to identify
galactic accretion in individual measurements. Rather, progress in testing
galactic accretion models is likely to come from systematic, statistical
comparisons of simulation predictions with observations. We discuss specific
areas where progress is likely to be particularly fruitful over the next few
years.Comment: Invited review to appear in Gas Accretion onto Galaxies, Astrophysics
and Space Science Library, eds. A. J. Fox & R. Dave, to be published by
Springer. Typos correcte
Priority setting of ICU resources in an influenza pandemic: a qualitative study of the Canadian public's perspectives
<p>Abstract</p> <p>Background</p> <p>Pandemic influenza may exacerbate existing scarcity of life-saving medical resources. As a result, decision-makers may be faced with making tough choices about who will receive care and who will have to wait or go without. Although previous studies have explored ethical issues in priority setting from the perspective of clinicians and policymakers, there has been little investigation into how the public views priority setting during a pandemic influenza, in particular related to intensive care resources.</p> <p>Methods</p> <p>To bridge this gap, we conducted three public town hall meetings across Canada to explore Canadian's perspectives on this ethical challenge. Town hall discussions group discussions were digitally recorded, transcribed, and analyzed using thematic analysis.</p> <p>Results</p> <p>Six interrelated themes emerged from the town hall discussions related to: ethical and empirical starting points for deliberation; criteria for setting priorities; pre-crisis planning; in-crisis decision-making; the need for public deliberation and input; and participants' deliberative struggle with the ethical issues.</p> <p>Conclusions</p> <p>Our findings underscore the importance of public consultation in pandemic planning for sustaining public trust in a public health emergency. Participants appreciated the empirical and ethical uncertainty of decision-making in an influenza pandemic and demonstrated nuanced ethical reasoning about priority setting of intensive care resources in an influenza pandemic. Policymakers may benefit from a better understanding the public's empirical and ethical 'starting points' in developing effective pandemic plans.</p
Recommended from our members
A tree-based decision model to support prediction of the severity of asthma exacerbations in children
This paper describes the development of a tree-based decision model to predict the severity of pediatric asthma exacerbations in the emergency department (ED) at 2 h following triage. The model was constructed from retrospective patient data abstracted from the ED charts. The original data was preprocessed to eliminate questionable patient records and to normalize values of age-dependent clinical attributes. The model uses attributes routinely collected in the ED and provides predictions even for incomplete observations. Its performance was verified on independent validating data (split-sample validation) where it demonstrated AUC (area under ROC curve) of 0.83, sensitivity of 84%, specificity of 71% and the Brier score of 0.18. The model is intended to supplement an asthma clinical practice guideline, however, it can be also used as a stand-alone decision tool
- …