4 research outputs found

    Shortening of membrane lipid acyl chains compensates for phosphatidylcholine deficiency in choline-auxotroph yeast

    Get PDF
    Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity

    Two sanctuaries, two <i>horos </i>inscriptions and a procession road of the Classical period in southern Euboia:Detection, reconstruction and interpretation

    No full text
    In this article we reconstruct the religious landscape between the sanctuaries of Plakari and Karababa in southern Euboia. These cult places were connected by a procession road, datable to the Classical period. To map this fragmentarily preserved road system and the general layout of the rural sanctuary on the Karababa hill slope we developed a three-staged methodology for targeted surveys. This comprises a desktop study of the target area using remotely sensed and spatial data, mapping the target area by making orthophotos from a drone, and ground-truthing by means of pedestrian surveys and revisiting and reassessing known archaeological find places. As a next phase of our research we reconstruct the road system and offer an interpretation of the road, sanctuary and other constituent elements of the religious landscape, emphasizing the importance of movement and landscape perception. In this final, interpretative part we also discuss a large and long boundary wall which we argue to have encompassed the sacred land belonging to the sanctuary, and two horos inscriptions, probably demarcating the temenos of the sanctuary proper, which included several platforms, a threshing floor and possible altars and which may have been dedicated to Demeter

    Affinity-Based Profiling of the Flavin Mononucleotide Riboswitch

    No full text
    [Image: see text] Riboswitches are structural RNA elements that control gene expression. These naturally occurring RNA sensors are of continued interest as antibiotic targets, molecular sensors, and functional elements of synthetic circuits. Here, we describe affinity-based profiling of the flavin mononucleotide (FMN) riboswitch to characterize ligand binding and structural folding. We designed and synthesized photoreactive ligands and used them for photoaffinity labeling. We showed selective labeling of the FMN riboswitch and used this covalent interaction to quantitatively measure ligand binding, which we demonstrate with the naturally occurring antibiotic roseoflavin. We measured conditional riboswitch folding as a function of temperature and cation concentration. Furthermore, combining photoaffinity labeling with reverse transcription revealed ligand binding sites within the aptamer domain with single-nucleotide resolution. The photoaffinity probe was applied to cellular extracts of Bacillus subtilis to demonstrate conditional folding of the endogenous low-abundant ribD FMN riboswitch in biologically derived samples using quantitative PCR. Lastly, binding of the riboswitch-targeting antibiotic roseoflavin to the FMN riboswitch was measured in live bacteria using the photoaffinity probe

    Shortening of membrane lipid acyl chains compensates for phosphatidylcholine deficiency in choline-auxotroph yeast

    Get PDF
    Phosphatidylcholine (PC) is an abundant membrane lipid component in most eukaryotes, including yeast, and has been assigned multiple functions in addition to acting as building block of the lipid bilayer. Here, by isolating S. cerevisiae suppressor mutants that exhibit robust growth in the absence of PC, we show that PC essentiality is subject to cellular evolvability in yeast. The requirement for PC is suppressed by monosomy of chromosome XV or by a point mutation in the ACC1 gene encoding acetyl-CoA carboxylase. Although these two genetic adaptations rewire lipid biosynthesis in different ways, both decrease Acc1 activity, thereby reducing average acyl chain length. Consistently, soraphen A, a specific inhibitor of Acc1, rescues a yeast mutant with deficient PC synthesis. In the aneuploid suppressor, feedback inhibition of Acc1 through acyl-CoA produced by fatty acid synthase (FAS) results from upregulation of lipid synthesis. The results show that budding yeast regulates acyl chain length by fine-tuning the activities of Acc1 and FAS and indicate that PC evolved by benefitting the maintenance of membrane fluidity
    corecore