26 research outputs found

    Positional cloning of the PIS mutation in goats and its impact on understanding mammalian sex-differentiation

    Get PDF
    In goats, the PIS (polled intersex syndrome) mutation is responsible for both the absence of horns in males and females and sex-reversal affecting exclusively XX individuals. The mode of inheritance is dominant for the polled trait and recessive for sex-reversal. In XX PIS-/- mutants, the expression of testis-specific genes is observed very precociously during gonad development. Nevertheless, a delay of 4–5 days is observed in comparison with normal testis differentiation in XY males. By positional cloning, we demonstrate that the PIS mutation is an 11.7-kb regulatory-deletion affecting the expression of two genes, PISRT1 and FOXL2 which could act synergistically to promote ovarian differentiation. The transcriptional extinction of these two genes leads, very early, to testis-formation in XX homozygous PIS-/- mutants. According to their expression profiles and bibliographic data, we propose that FOXL2 may be an ovary-differentiating gene, and the non-coding RNA PISRT1, an anti-testis factor repressing SOX9, a key regulator of testis differentiation. Under this hypothesis, SRY, the testis-determining factor would inhibit these two genes in the gonads of XY males, to ensure testis differentiation

    High-resolution comparative mapping among man, cattle and mouse suggests a role for repeat sequences in mammalian genome evolution

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Comparative mapping provides new insights into the evolutionary history of genomes. In particular, recent studies in mammals have suggested a role for segmental duplication in genome evolution. In some species such as Drosophila or maize, transposable elements (TEs) have been shown to be involved in chromosomal rearrangements. In this work, we have explored the presence of interspersed repeats in regions of chromosomal rearrangements, using an updated high-resolution integrated comparative map among cattle, man and mouse.</p> <p>Results</p> <p>The bovine, human and mouse comparative autosomal map has been constructed using data from bovine genetic and physical maps and from FISH-mapping studies. We confirm most previous results but also reveal some discrepancies. A total of 211 conserved segments have been identified between cattle and man, of which 33 are new segments and 72 correspond to extended, previously known segments. The resulting map covers 91% and 90% of the human and bovine genomes, respectively. Analysis of breakpoint regions revealed a high density of species-specific interspersed repeats in the human and mouse genomes.</p> <p>Conclusion</p> <p>Analysis of the breakpoint regions has revealed specific repeat density patterns, suggesting that TEs may have played a significant role in chromosome evolution and genome plasticity. However, we cannot rule out that repeats and breakpoints accumulate independently in the few same regions where modifications are better tolerated. Likewise, we cannot ascertain whether increased TE density is the cause or the consequence of chromosome rearrangements. Nevertheless, the identification of high density repeat clusters combined with a well-documented repeat phylogeny should highlight probable breakpoints, and permit their precise dating. Combining new statistical models taking the present information into account should help reconstruct ancestral karyotypes.</p

    Cytogenetic mapping of 25 goat mammary gland Expressed Sequence Tags (ESTs)

    Get PDF
    Today, there is a shift towards a positional candidate approach in the molecular identification of genes. This study reports on an Expressed Sequence Tags (ESTs) mapping initiative in goats, based on sequence information gathered from a previous mammary gland cDNA systematic sequencing project. A total of 25 novel genes was localised cytogenetically on 16 goat chromosomes. Six of these ESTs were found to map to cattle milk QTL regions. These results made it possible to assess the use of ESTs as a shortcut to the molecular identification of some QTLs and as a valuable tool for comparative mapping

    The prion or the related Shadoo protein is required for early mouse embryogenesis

    Get PDF
    AbstractThe prion protein PrP has a key role in transmissible spongiform encephalopathies but its biological function remains largely unknown. Recently, a related protein, Shadoo, was discovered. Its biological properties and brain distribution partially overlap that of PrP. We report that the Shadoo-encoding gene knockdown in PrP-knockout mouse embryos results in a lethal phenotype, occurring between E8 and E11, not observed on the wild-type genetic background. It reveals that these two proteins play a shared, crucial role in mammalian embryogenesis, explaining the lack of severe phenotype in PrP-knockout mammals, an appreciable step towards deciphering the biological role of this protein family

    Isolation of subtelomeric DNA sequences labelling sheep and goat chromosome ends

    Get PDF
    Two techniques that make it possible to isolate telomere DNA are presented, using sheep as an example. The first technique is based upon the screening of a sheep BAC library with PCR amplified DNA segments preserved from high-power laser beam irradiation. Twenty-three BACs hybridising to 13 subtelomeric regions in sheep and goats were obtained (out of 27 in the sheep complement), of which 13 recognised more than one region, telomeric or not. Twenty-three microsatellites were isolated from these BACs and 22 were genetically mapped on the sheep international genetic map, always consistently with the cytogenetical localisation in 17 cases out of 22. These results are discussed. The second technique is based upon the selective cloning of subtelomeric enriched DNA. Preliminary results were obtained by this approach

    A Deletion in Exon 9 of the LIPH Gene Is Responsible for the Rex Hair Coat Phenotype in Rabbits (Oryctolagus cuniculus)

    Get PDF
    The fur of common rabbits is constituted of 3 types of hair differing in length and diameter while that of rex animals is essentially made up of amazingly soft down-hair. Rex short hair coat phenotypes in rabbits were shown to be controlled by three distinct loci. We focused on the “r1” mutation which segregates at a simple autosomal-recessive locus in our rabbit strains. A positional candidate gene approach was used to identify the rex gene and the corresponding mutation. The gene was primo-localized within a 40 cM region on rabbit chromosome 14 by genome scanning families of 187 rabbits in an experimental mating scheme. Then, fine mapping refined the region to 0.5 cM (Z = 78) by genotyping an additional 359 offspring for 94 microsatellites present or newly generated within the first defined interval. Comparative mapping pointed out a candidate gene in this 700 kb region, namely LIPH (Lipase Member H). In humans, several mutations in this major gene cause alopecia, hair loss phenotypes. The rabbit gene structure was established and a deletion of a single nucleotide was found in LIPH exon 9 of rex rabbits (1362delA). This mutation results in a frameshift and introduces a premature stop codon potentially shortening the protein by 19 amino acids. The association between this deletion and the rex phenotype was complete, as determined by its presence in our rabbit families and among a panel of 60 rex and its absence in all 60 non-rex rabbits. This strongly suggests that this deletion, in a homozygous state, is responsible for the rex phenotype in rabbits

    A Deletion in Exon 9 of the LIPH Gene Is Responsible for the Rex Hair Coat Phenotype in Rabbits (Oryctolagus cuniculus)

    Get PDF
    The fur of common rabbits is constituted of 3 types of hair differing in length and diameter while that of rex animals is essentially made up of amazingly soft down-hair. Rex short hair coat phenotypes in rabbits were shown to be controlled by three distinct loci. We focused on the “r1” mutation which segregates at a simple autosomal-recessive locus in our rabbit strains. A positional candidate gene approach was used to identify the rex gene and the corresponding mutation. The gene was primo-localized within a 40 cM region on rabbit chromosome 14 by genome scanning families of 187 rabbits in an experimental mating scheme. Then, fine mapping refined the region to 0.5 cM (Z = 78) by genotyping an additional 359 offspring for 94 microsatellites present or newly generated within the first defined interval. Comparative mapping pointed out a candidate gene in this 700 kb region, namely LIPH (Lipase Member H). In humans, several mutations in this major gene cause alopecia, hair loss phenotypes. The rabbit gene structure was established and a deletion of a single nucleotide was found in LIPH exon 9 of rex rabbits (1362delA). This mutation results in a frameshift and introduces a premature stop codon potentially shortening the protein by 19 amino acids. The association between this deletion and the rex phenotype was complete, as determined by its presence in our rabbit families and among a panel of 60 rex and its absence in all 60 non-rex rabbits. This strongly suggests that this deletion, in a homozygous state, is responsible for the rex phenotype in rabbits

    Cytogenetic mapping of 25 goat mammary gland Expressed Sequence Tags (ESTs)

    No full text
    Today, there is a shift towards a positional candidate approach in the molecular identification of genes. This study reports on an Expressed Sequence Tags (ESTs) mapping initiative in goats, based on sequence information gathered from a previous mammary gland cDNA systematic sequencing project. A total of 25 novel genes was localised cytogenetically on 16 goat chromosomes. Six of these ESTs were found to map to cattle milk QTL regions. These results made it possible to assess the use of ESTs as a shortcut to the molecular identification of some QTLs and as a valuable tool for comparative mapping.Localisation cytogénétique de 25 ESTs caprins issus de glande mammaire. L'identification moléculaire des gÚnes s'oriente actuellement vers une stratégie de candidats positionnels. Cette étude, réalisée chez la chÚvre, décrit la localisation cytogénétique d'étiquettes (ESTs) obtenues précédemment par séquençage d'ADNc de glande mammaire. Au total, 25 nouveaux gÚnes ont ainsi été localisés sur 16 chromosomes caprins. Six de ces gÚnes ont été cartographiés dans des régions de QTL laitiers bovins. Ces résultats ont permis d'évaluer les possibilités d'utilisation des ESTs, d'une part, pour l'identification moléculaire des QTL et d'autre part, comme outil de cartographie comparée
    corecore