26 research outputs found

    Exploring secondary-sphere interactions in Fe–N_xH_y complexes relevant to N_2 fixation

    Get PDF
    Hydrogen bonding and other types of secondary-sphere interactions are ubiquitous in metalloenzyme active sites and are critical to the transformations they mediate. Exploiting secondary sphere interactions in synthetic catalysts to study the role(s) they might play in biological systems, and to develop increasingly efficient catalysts, is an important challenge. Whereas model studies in this broad context are increasingly abundant, as yet there has been relatively little progress in the area of synthetic catalysts for nitrogen fixation that incorporate secondary sphere design elements. Herein we present our first study of Fe–NxHy complexes supported by new tris(phosphine)silyl ligands, abbreviated as [SiP^(Nme_3)] and [SiP^(iPr_2)P^(Nme)], that incorporate remote tertiary amine hydrogen-bond acceptors within a tertiary phosphine/amine 6-membered ring. These remote amine sites facilitate hydrogen-bonding interactions via a boat conformation of the 6-membered ring when certain nitrogenous substrates (e.g., NH_3 and N_2H_4) are coordinated to the apical site of a trigonal bipyramidal iron complex, and adopt a chair conformation when no H-bonding is possible (e.g., N_2). Countercation binding at the cyclic amine is also observed for anionic {Fe–N_2}− complexes. Reactivity studies in the presence of proton/electron sources show that the incorporated amine functionality leads to rapid generation of catalytically inactive Fe–H species, thereby substantiating a hydride termination pathway that we have previously proposed deactivates catalysts of the type [EP^R_3]FeN_2 (E = Si, C)

    Catalytic Reduction of N_2 to NH_3 by an Fe−N_2 Complex Featuring a C‑Atom Anchor

    Get PDF
    While recent spectroscopic studies have established the presence of an interstitial carbon atom at the center of the iron–molybdenum cofactor (FeMoco) of MoFe-nitrogenase, its role is unknown. We have pursued Fe–N_2 model chemistry to explore a hypothesis whereby this C-atom (previously denoted as a light X-atom) may provide a flexible trans interaction with an Fe center to expose an Fe–N_2 binding site. In this context, we now report on Fe complexes of a new tris(phosphino)alkyl (CP^(iPr)_3) ligand featuring an axial carbon donor. It is established that the iron center in this scaffold binds dinitrogen trans to the C_(alkyl)-atom anchor in three distinct and structurally characterized oxidation states. Fe–C_(alkyl) lengthening is observed upon reduction, reflective of significant ionic character in the Fe–C_(alkyl) interaction. The anionic (CP^(iPr)_3)FeN_2^– species can be functionalized by a silyl electrophile to generate (CP^(iPr)_3)Fe–N_2SiR_3. (CP^(iPr)_3)FeN_2^– also functions as a modest catalyst for the reduction of N_2 to NH_3 when supplied with electrons and protons at −78 °C under 1 atm N_2 (4.6 equiv NH_3/Fe)

    Diiron Bridged-Thiolate Complexes That Bind N_2 at the Fe^(II)Fe^(II), Fe^(II)Fe^I, and Fe^IFe^I Redox States

    Get PDF
    All known nitrogenase cofactors are rich in both sulfur and iron and are presumed capable of binding and reducing N_2. Nonetheless, synthetic examples of transition metal model complexes that bind N_2 and also feature sulfur donor ligands remain scarce. We report herein an unusual series of low-valent diiron complexes featuring thiolate and dinitrogen ligands. A new binucleating ligand scaffold is introduced that supports an Fe(μ-SAr)Fe diiron subunit that coordinates dinitrogen (N_2-Fe(μ-SAr)Fe-N_2) across at least three oxidation states (Fe^(II)Fe^(II), Fe^(II)Fe^I, and Fe^IFe^I). The (N_2-Fe(μ-SAr)Fe-N_2) system undergoes reduction of the bound N_2 to produce NH_3 (∼50% yield) and can efficiently catalyze the disproportionation of N_2H_4 to NH_3 and N_2. The present scaffold also supports dinitrogen binding concomitant with hydride as a co-ligand. Synthetic model complexes of these types are desirable to ultimately constrain hypotheses regarding Fe-mediated nitrogen fixation in synthetic and biological systems

    Photoinduced Ullmann C–N Coupling: Demonstrating the Viability of a Radical Pathway

    Get PDF
    Carbon–nitrogen (C–N) bond-forming reactions of amines with aryl halides to generate arylamines (anilines), mediated by a stoichiometric copper reagent at elevated temperature (>180°C), were first described by Ullmann in 1903. In the intervening century, this and related C–N bond-forming processes have emerged as powerful tools for organic synthesis. Here, we report that Ullmann C–N coupling can be photoinduced by using a stoichiometric or a catalytic amount of copper, which enables the reaction to proceed under unusually mild conditions (room temperature or even –40°C). An array of data are consistent with a single-electron transfer mechanism, representing the most substantial experimental support to date for the viability of this pathway for Ullmann C–N couplings

    Transition-Metal-Catalyzed Alkylations of Amines with Alkyl Halides: Photoinduced, Copper-Catalyzed Couplings of Carbazoles

    Get PDF
    N-alkylations of carbazoles with a variety of secondary and hindered primary alkyl iodides can be achieved by using a simple precatalyst (CuI) under mild conditions (0 °C) in the presence of a Brønsted base; at higher temperature (30 °C), secondary alkyl bromides also serve as suitable coupling partners. A Li[Cu(carbazolide)_2] complex has been crystallographically characterized, and it may serve as an intermediate in the catalytic cycle

    Design, Synthesis, and Study of Novel Platforms for Iron-N2 Chemistry and Photoinduced, Copper-mediated C-N Bond Formation

    Get PDF
    Several new ligand platforms designed to support iron dinitrogen chemistry have been developed. First, we report Fe complexes of a tris(phosphino)alkyl (CPiPr3) ligand featuring an axial carbon donor intended to conceptually model the interstitial carbide atom of the nitrogenase iron-molybdenum cofactor (FeMoco). It is established that in this scaffold, the iron center binds dinitrogen trans to the Calkyl anchor in three structurally characterized oxidation states. Fe-Calkyl lengthening is observed upon reduction, reflective of significant ionic character in the Fe-Calkyl interaction. The anionic (CPiPr3)FeN2- species can be functionalized by a silyl electrophile to generate (CPiPr3)Fe-N2SiR3. This species also functions as a modest catalyst for the reduction of N2 to NH3. Next, we introduce a new binucleating ligand scaffold that supports an Fe(μ-SAr)Fe diiron subunit that coordinates dinitrogen (N2-Fe(μ-SAr)Fe-N2) across at least three oxidation states (FeIIFeII, FeIIFeI, and FeIFeI). Despite the sulfur-rich coordination environment of iron in FeMoco, synthetic examples of transition metal model complexes that bind N2 and also feature sulfur donor ligands remain scarce; these complexes thus represent an unusual series of low-valent diiron complexes featuring thiolate and dinitrogen ligands. The (N2-Fe(μ-SAr)Fe-N2) system undergoes reduction of the bound N2 to produce NH3 (~50% yield) and can efficiently catalyze the disproportionation of N2H4 to NH3 and N2. The present scaffold also supports dinitrogen binding concomitant with hydride as a co-ligand. Next, inspired by the importance of secondary-sphere interactions in many metalloenzymes, we present complexes of iron in two new ligand scaffolds ([SiPNMe3] and [SiPiPr2PNMe]) that incorporate hydrogen-bond acceptors (tertiary amines) which engage in interactions with nitrogenous substrates bound to the iron center (NH3 and N2H4). Cation binding is also facilitated in anionic Fe(0)-N2 complexes. While Fe-N2 complexes of a related ligand ([SiPiPr3]) lacking hydrogen-bond acceptors produce a substantial amount of ammonia when treated with acid and reductant, the presence of the pendant amines instead facilitates the formation of metal hydride species. Additionally, we present the development and mechanistic study of copper-mediated and copper-catalyzed photoinduced C-N bond forming reactions. Irradiation of a copper-amido complex, ((m-tol)3P)2Cu(carbazolide), in the presence of aryl halides furnishes N-phenylcarbazole under mild conditions. The mechanism likely proceeds via single-electron transfer from an excited state of the copper complex to the aryl halide, generating an aryl radical. An array of experimental data are consistent with a radical intermediate, including a cyclization/stereochemical investigation and a reactivity study, providing the first substantial experimental support for the viability of a radical pathway for Ullmann C-N bond formation. The copper complex can also be used as a precatalyst for Ullmann C-N couplings. We also disclose further study of catalytic Calkyl-N couplings using a CuI precatalyst, and discuss the likely role of [Cu(carbazolide)2]- and [Cu(carbazolide)3]- species as intermediates in these reactions. Finally, we report a series of four-coordinate, pseudotetrahedral P3FeII-X complexes supported by tris(phosphine)borate ([PhBP3FeR]-) and phosphiniminato X-type ligands (-N=PR'3) that in combination tune the spin-crossover behavior of the system. Low-coordinate transition metal complexes such as these that undergo reversible spin-crossover remain rare, and the spin equilibria of these systems have been studied in detail by a suite of spectroscopic techniques.</p

    Iron dinitrogen complexes and nitrogen fixation with tris(phosphine)alkyl ligands

    No full text
    The interstitial light atom of the FeMo-cofactor of MoFe-Nitrogenase has recently been identified as a C-atom, and hypotheses regarding its possible role/s warrant synthetic model studies. We have previously suggested that one role this structural unit may play is to modulate an Fe-C interaction upon substrate binding and redn. at the cofactor. To explore this idea, we have begun to target ligands whereby a comparatively loosely bound C-atom is installed on an Fe center in a position trans to where substrates such as nitrogen bind. I will discuss the fundamental coordination chem. of these ligands at iron and other late first row metals, and will describe their efficacy towards the catalytic redn. of dinitrogen to ammonia

    (4-(Adamantan-1-yl)-1-(isopropyl)-1H-imidazol-2-yl)methanol

    No full text
    (4-(Adamantan-1-yl)-1-(isopropyl)-1H-imidazol-2-yl)methanol was prepared through a five-step process starting from commercially available 1-acetyladamantane. Each step proceeded in moderate-to-excellent yields and the overall yield across five steps was 28%. The compound was identified and characterized by 1H and 13C{1H} NMR, high-resolution mass spectroscopy, and elemental analysis. This compound and its derivatives have the potential to be used as precursors to the synthesis of biomimetic chelating ligands
    corecore