367 research outputs found
Nanometer Scale Mapping of the Density of States in an Inhomogeneous Superconductor
Using high speed scanning tunneling spectroscopy, we perform a full mapping
of the quasiparticle density of states (DOS) in single crystals of
BiPbSrCaCuO(2212). The measurements carried out at 5 K showed a complex spatial
pattern of important variations of the local DOS on the nanometer scale.
Superconducting areas are co-existing with regions of a smooth and larger
gap-like DOS structure. The superconducting regions are found to have a minimum
size of about 3 nm. The role of Pb-introduced substitutional disorder in the
observed spatial variations of the local DOS is discussed.Comment: 4 page Letter with 3 figures (2 color figures
Low-Frequency Optical Conductivity in Inhomogeneous d-wave Superconductors
Motivated by the recent optical conductivity experiments on
Bi_2Sr_2CaCu_2O_{8+delta} films, we examine the possible origin of
low-frequency dissipation in the superconducting state. In the presence of
spatial inhomogeneity of the local phase stiffness rho_s, it is shown that some
spectral weight is removed from omega=0 to finite frequencies and contribute to
dissipation. A case where both rho_s and the local normal fluid density are
inhomogeneous is also considered. We find an enhanced dissipation at low
frequency if the two variations are anti-correlated.Comment: To appear in Phys. Rev.
Constraints on the Quasiparticle Density of States in High- Superconductors
In this Letter we present new tunneling data on YBaCuO thin films
by low temperature scanning tunneling spectroscopy. Unusual peak-dip-hump
features, previously reported in BiSrCaCuO, are also
found in YBaCuO. To analyse these common signatures we propose a
new heuristic model in which, in addition to the d-wave symmetry, the gap
function is energy dependent. A simple expression for the quasiparticle density
of states is derived, giving an excellent agreement with the experiment. The
dynamics of the quasiparticle states and the energy scales involved in the
superconducting transition are discussed.Comment: 4 page Letter with 3 figure
Local tunneling spectroscopy of the electron-doped cuprate Sm1.85Ce0.15CuO4
We present local tunneling spectroscopy in the optimally electron-doped
cuprate Sm2-xCexCuO4 x=0.15. A clear signature of the superconducting gap is
observed with an amplitude ranging from place to place and from sample to
sample (Delta~3.5-6meV). Another spectroscopic feature is simultaneously
observed at high energy above \pm 50meV. Its energy scale and temperature
evolution is found to be compatible with previous photoemission and optical
experiments. If interpreted as the signature of antiferromagnetic order in the
samples, these results could suggest the coexistence on the local scale of
antiferromagnetism and superconductivity on the electron-doped side of cuprate
superconductors
Proximity effect between two superconductors spatially resolved by scanning tunneling spectroscopy
We present a combined experimental and theoretical study of the proximity
effect in an atomic-scale controlled junction between two different
superconductors. Elaborated on a Si(111) surface, the junction comprises a Pb
nanocrystal with an energy gap of 1.2 meV, connected to a crystalline atomic
monolayer of lead with a gap of 0.23 meV. Using in situ scanning tunneling
spectroscopy we probe the local density of states of this hybrid system both in
space and in energy, at temperatures below and above the critical temperature
of the superconducting monolayer. Direct and inverse proximity effects are
revealed with high resolution. Our observations are precisely explained with
the help of a self-consistent solution of the Usadel equations. In particular,
our results demonstrate that in the vicinity of the Pb islands, the Pb
monolayer locally develops a finite proximity-induced superconducting order
parameter, well above its own bulk critical temperature. This leads to a giant
proximity effect where the superconducting correlations penetrate inside the
monolayer a distance much larger than in a non-superconducting metal.Comment: 13 pages, 14 figures, accepted for publication in Physical Review
Probing the superconducting condensate on a nanometer scale
Superconductivity is a rare example of a quantum system in which the
wavefunction has a macroscopic quantum effect, due to the unique condensate of
electron pairs. The amplitude of the wavefunction is directly related to the
pair density, but both amplitude and phase enter the Josephson current : the
coherent tunneling of pairs between superconductors. Very sensitive devices
exploit the superconducting state, however properties of the {\it condensate}
on the {\it local scale} are largely unknown, for instance, in unconventional
high-T cuprate, multiple gap, and gapless superconductors.
The technique of choice would be Josephson STS, based on Scanning Tunneling
Spectroscopy (STS), where the condensate is {\it directly} probed by measuring
the local Josephson current (JC) between a superconducting tip and sample.
However, Josephson STS is an experimental challenge since it requires stable
superconducting tips, and tunneling conditions close to atomic contact. We
demonstrate how these difficulties can be overcome and present the first
spatial mapping of the JC on the nanometer scale. The case of an MgB film,
subject to a normal magnetic field, is considered.Comment: 7 pages, 6 figure
Probing the superfluid velocity with a superconducting tip: the Doppler shift effect
We address the question of probing the supercurrents in superconducting (SC)
samples on a local scale by performing Scanning Tunneling Spectroscopy (STS)
experiments with a SC tip. In this configuration, we show that the tunneling
conductance is highly sensitive to the Doppler shift term in the SC
quasiparticle spectrum of the sample, thus allowing the local study of the
superfluid velocity. Intrinsic screening currents, such as those surrounding
the vortex cores in a type II SC in a magnetic field, are directly probed. With
Nb tips, the STS mapping of the vortices, in single crystal 2H-NbSe_2, reveals
both the vortex cores, on the scale of the SC coherence length , and the
supercurrents, on the scale of the London penetration length . A
subtle interplay between the SC pair potential and the supercurrents at the
vortex edge is observed. Our results open interesting prospects for the study
of screening currents in any superconductor.Comment: 4 pages, 5 figure
- …