8 research outputs found
Gauged diffeomorphisms and hidden symmetries in Kaluza-Klein theories
We analyze the symmetries that are realized on the massive Kaluza-Klein modes
in generic D-dimensional backgrounds with three non-compact directions. For
this we construct the unbroken phase given by the decompactification limit, in
which the higher Kaluza-Klein modes are massless. The latter admits an
infinite-dimensional extension of the three-dimensional diffeomorphism group as
local symmetry and, moreover, a current algebra associated to SL(D-2,R)
together with the diffeomorphism algebra of the internal manifold as global
symmetries. It is shown that the `broken phase' can be reconstructed by gauging
a certain subgroup of the global symmetries. This deforms the three-dimensional
diffeomorphisms to a gauged version, and it is shown that they can be governed
by a Chern-Simons theory, which unifies the spin-2 modes with the Kaluza-Klein
vectors. This provides a reformulation of D-dimensional Einstein gravity, in
which the physical degrees of freedom are described by the scalars of a gauged
non-linear sigma model based on SL(D-2,R)/SO(D-2), while the metric appears in
a purely topological Chern-Simons form.Comment: 23 pages, minor changes, v3: published versio
U-duality (sub-)groups and their topology
We discuss some consequences of the fact that symmetry groups appearing in
compactified (super-)gravity may be non-simply connected. The possibility to
add fermions to a theory results in a simple criterion to decide whether a
3-dimensional coset sigma model can be interpreted as a dimensional reduction
of a higher dimensional theory. Similar criteria exist for higher dimensional
sigma models, though less decisive. Careful examination of the topology of
symmetry groups rules out certain proposals for M-theory symmetries, which are
not ruled out at the level of the algebra's. We conclude with an observation on
the relation between the ``generalized holonomy'' proposal, and the actual
symmetry groups resulting from E_10 and E_11 conjectures.Comment: LaTeX, 8 pages, 2 tables, 1 figure, uses IOP-style files. Contributed
to the proceedings of the RTN-workshop ``The quantum structure of space-time
and the geometrical nature of the fundamental interactions,'', Copenhagen,
Denmark, september 200
The topology of U-duality (sub-)groups
We discuss the topology of the symmetry groups appearing in compactified
(super-)gravity, and discuss two applications. First, we demonstrate that for 3
dimensional sigma models on a symmetric space G/H with G non-compact and H the
maximal compact subgroup of G, the possibility of oxidation to a higher
dimensional theory can immediately be deduced from the topology of H. Second,
by comparing the actual symmetry groups appearing in maximal supergravities
with the subgroups of SL(32,R) and Spin(32), we argue that these groups cannot
serve as a local symmetry group for M-theory in a formulation of de Wit-Nicolai
type.Comment: 18 pages, LaTeX, 1 figure, 2 table
Hidden Symmetries and Dirac Fermions
In this paper, two things are done. First, we analyze the compatibility of
Dirac fermions with the hidden duality symmetries which appear in the toroidal
compactification of gravitational theories down to three spacetime dimensions.
We show that the Pauli couplings to the p-forms can be adjusted, for all simple
(split) groups, so that the fermions transform in a representation of the
maximal compact subgroup of the duality group G in three dimensions. Second, we
investigate how the Dirac fermions fit in the conjectured hidden overextended
symmetry G++. We show compatibility with this symmetry up to the same level as
in the pure bosonic case. We also investigate the BKL behaviour of the
Einstein-Dirac-p-form systems and provide a group theoretical interpretation of
the Belinskii-Khalatnikov result that the Dirac field removes chaos.Comment: 30 page
Duality Symmetries and G^{+++} Theories
We show that the non-linear realisations of all the very extended algebras
G^{+++}, except the B and C series which we do not consider, contain fields
corresponding to all possible duality symmetries of the on-shell degrees of
freedom of these theories. This result also holds for G_2^{+++} and we argue
that the non-linear realisation of this algebra accounts precisely for the form
fields present in the corresponding supersymmetric theory. We also find a
simple necessary condition for the roots to belong to a G^{+++} algebra.Comment: 35 pages. v2: 2 appendices added, other minor corrections. v3: tables
corrected, other minor changes, one appendix added, refs. added. Version
published in Class. Quant. Gra
G2 Dualities in D=5 Supergravity and Black Strings
Five dimensional minimal supergravity dimensionally reduced on two commuting
Killing directions gives rise to a G2 coset model. The symmetry group of the
coset model can be used to generate new solutions by applying group
transformations on a seed solution. We show that on a general solution the
generators belonging to the Cartan and nilpotent subalgebras of G2 act as
scaling and gauge transformations, respectively. The remaining generators of G2
form a sl(2,R)+sl(2,R) subalgebra that can be used to generate non-trivial
charges. We use these generators to generalize the five dimensional Kerr string
in a number of ways. In particular, we construct the spinning electric and
spinning magnetic black strings of five dimensional minimal supergravity. We
analyze physical properties of these black strings and study their
thermodynamics. We also explore their relation to black rings.Comment: typos corrected (26 pages + appendices, 2 figures