39 research outputs found
TB truths:Patients’ experience with tuberculosis and healthcare in sub-Saharan Africa
TB remains one of the most alarming global health threats of this age. Despite the often available TB medication for free, rates are not being significantly reduced or in some areas even going up. TB epidemiology have become more complex, due to the HIV epidemic and development of drug-resistance. Our systematic review gives insight into the paucity of qualitative TB research available from countries with low and medium TB incidence. Drawing on anthropological and public health approaches, this thesis additionally provides insights in patients’ experiences of TB and healthcare in South Africa, Zambia, and Gabon. In each country, we conducted ethnographic research in combination with quantitative or visual methods. These countries have divergent epidemiologic characteristics and TB programmes, yet TB remains a significant threat to the public health situation. We aimed at generating a more holistic understanding of the everyday challenges TB patients face by investigating their vulnerabilities and resilience, embodied experience of TB treatment, treatment adherence, socio-economic inequalities, stigma, TB perceptions, and available therapeutic traditions. In addition to our articles, our visual ethnographic film intends to transcend explicit scientific arguments in words, bringing the viewer back to an empathetic understanding of what is happening to some TB patients included in our study. We elaborate on how visual methods may synergize the disciplines public health and anthropology. With the use of film, we provided patients with an alternative path for expressing their experiences. We hope to contribute to improving TB programmes by creating novel synergies between patients, researchers, and policy-makers
Hydrogen and Carbon Monoxide-Utilizing Kyrpidia spormannii Species From Pantelleria Island, Italy
Volcanic and geothermal areas are hot and often acidic environments that emit geothermal gasses, including H2, CO and CO2. Geothermal gasses mix with air, creating conditions where thermoacidophilic aerobic H2- and CO-oxidizing microorganisms could thrive. Here, we describe the isolation of two Kyrpidia spormannii strains, which can grow autotrophically by oxidizing H2 and CO with oxygen. These strains, FAVT5 and COOX1, were isolated from the geothermal soils of the Favara Grande on Pantelleria Island, Italy. Extended physiology studies were performed with K. spormannii FAVT5, and showed that this strain grows optimally at 55\ub0C and pH 5.0. The highest growth rate is obtained using H2 as energy source (\u3bcmax 0.19 \ub1 0.02 h\u20131, doubling time 3.6 h). K. spormannii FAVT5 can additionally grow on a variety of organic substrates, including some alcohols, volatile fatty acids and amino acids. The genome of each strain encodes for two O2-tolerant hydrogenases belonging to [NiFe] group 2a hydrogenases and transcriptome studies using K. spormannii FAVT5 showed that both hydrogenases are expressed under H2 limiting conditions. So far no Firmicutes except K. spormannii FAVT5 have been reported to exhibit a high affinity for H2, with a Ks of 327 \ub1 24 nM. The genomes of each strain encode for one putative CO dehydrogenase, belonging to Form II aerobic CO dehydrogenases. The genomic potential and physiological properties of these Kyrpidia strains seem to be quite well adapted to thrive in the harsh environmental volcanic conditions
Methylacidimicrobium thermophilum AP8, a Novel Methane- and Hydrogen-Oxidizing Bacterium Isolated From Volcanic Soil on Pantelleria Island, Italy
The Favara Grande is a geothermal area located on Pantelleria Island, Italy. The area is characterized high temperatures in the top layer of the soil (60\ub0C), low pH (3\u20135) and hydrothermal gas emissions mainly composed of carbon dioxide (CO2), methane (CH4), and hydrogen (H2). These geothermal features may provide a suitable niche for the growth of chemolithotrophic thermoacidophiles, including the lanthanide-dependent methanotrophs of the phylum Verrucomicrobia. In this study, we started enrichment cultures inoculated with soil of the Favara Grande at 50 and 60\ub0C with CH4 as energy source and medium containing sufficient lanthanides at pH 3 and 5. From these cultures, a verrucomicrobial methanotroph could be isolated via serial dilution and floating filters techniques. The genome of strain AP8 was sequenced and based on phylogenetic analysis we propose to name this new species Methylacidimicrobium thermophilum AP8. The transcriptome data at \u3bcmax (0.051 \ub1 0.001 h 121, doubling time ~14 h) of the new strain showed a high expression of the pmoCAB2 operon encoding the membrane-bound methane monooxygenase and of the gene xoxF1, encoding the lanthanide-dependent methanol dehydrogenase. A second pmoCAB operon and xoxF2 gene were not expressed. The physiology of strain AP8 was further investigated and revealed an optimal growth in a pH range of 3\u20135 at 50\ub0C, representing the first thermophilic strain of the genus Methylacidimicrobium. Moreover, strain AP8 had a KS(app) for methane of 8 \ub1 1 \u3bcM. Beside methane, a type 1b [NiFe] hydrogenase enabled hydrogen oxidation at oxygen concentrations up to 1%. Taken together, our results expand the knowledge on the characteristics and adaptations of verrucomicrobial methanotrophs in hydrothermal environments and add a new thermophilic strain to the genus Methylacidimicrobium
Melioidosis in travelers: An analysis of Dutch melioidosis registry data 1985–2018
Background: Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is an opportunistic infection across the tropics. Here, we provide a systematic overview of imported human cases in a non-endemic country over a 25-year period. Methods: All 5