6,337 research outputs found
A Technical Note on Quantum Dots for Multi-Color Fluorescence in situ Hybridization
Quantum dots (Qdots) are semiconductor nanocrystals, which are photo-stable, show bright fluorescence with narrow, symmetric emission spectra and are available in multiple resolvable colors. We established a FISH protocol for the simultaneous visualization of up to 6 different DNA probes differentially labeled with Qdots and with conventional organic fluorochromes. Using a Leica SP5 laser scanning confocal microscope for image capture, we tested various combinations of hapten-labeled probes detected with streptavidin-Qdot525, sheep anti-digoxigenin-Qdot605, rat anti-dinitrophenyl-Qdot655 and goat anti-mouse-Qdot655, respectively, together with FITC-dUTP-, Cy3-dUTP- and Texas Red-dUTP-labeled probes. We further demonstrate that Qdots are suitable for imaging of FISH probes using 4Pi microscopy, which promises to push the resolution limits of light microscopy to 100 nanometers or less when applying a deconvolution algorithm, but requires the use of highly photo-stable fluors. Copyright (C) 2009 S. Karger AG, Base
Detection of laser-UV microirradiation-induced DNA photolesions by immunofluorescent staining
A low-power laser-UV microbeam of wave-length 257 nm was used for microirradiation of a small part of the nucleus of Chinese hamster cells. Following fixation in interphase or in the subsequent metaphase indirect immunofluorescent staining was performed with antiserum to photoproducts of DNA treated with far UV light.
The results show that antibodies specific for UV-irradiated DNA can be used for a direct detection of laser-UV microirradiation-induced DNA photolesions. The potential usefulness of this method for investigation of the spatial arrangement of chromosomes in the interphase nucleus is discussed
Rabl's model of the interphase chromosome arrangement tested in Chinise hamster cells by premature chromosome condensation and laser-UV-microbeam experiments
In 1885 Carl Rabl published his theory on the internal structure of the interphase nucleus. We have tested two predictions of this theory in fibroblasts grown in vitro from a female Chinese hamster, namely (1) the Rabl-orientation of interphase chromosomes and (2) the stability of the chromosome arrangement established in telophase throughout the subsequent interphase. Tests were carried out by premature chromosome condensation (PCC) and laser-UV-microirradiation of the interphase nucleus. Rabl-orientation of chromosomes was observed in G1 PCCs and G2 PCCs. The cell nucleus was microirradiated in G1 at one or two sites and pulse-labelled with 3H-thymidine for 2h. Cells were processed for autoradiography either immediately thereafter or after an additional growth period of 10 to 60h. Autoradiographs show unscheduled DNA synthesis (UDS) in the microirradiated nuclear part(s). The distribution of labelled chromatin was evaluated in autoradiographs from 1035 cells after microirradiation of a single nuclear site and from 253 cells after microirradiation of two sites. After 30 to 60h postincubation the labelled regions still appeared coherent although the average size of the labelled nuclear area fr increased from 14.2% (0h) to 26.5% (60h). The relative distance dr, i.e. the distance between two microirradiated sites divided by the diameter of the whole nucleus, showed a slight decrease with increasing incubation time. Nine metaphase figures were evaluated for UDS-label after microirradiation of the nuclear edge in G1. An average of 4.3 chromosomes per cell were labelled. Several chromosomes showed joint labelling of both distal chromosome arms including the telomeres, while the centromeric region was free from label. This label pattern is interpreted as the result of a V-shaped orientation of these particular chromosomes in the interphase nucleus with their telomeric regions close to each other at the nuclear edge. Our data support the tested predictions of the Rabl-model. Small time-dependent changes of the nuclear space occupied by single chromosomes and of their relative positions in the interphase nucleus seem possible, while the territorial organization of interphase chromosomes and their arrangement in general is maintained during interphase. The present limitations of the methods used for this study are discussed
Direct carrier detection by in situ suppression hybridization with cosmid clones of the Duchenne/Becker muscular dystrophy locus
A basic problem in genetic counseling of families with Duchenne/Becker muscular dystrophy (DMD/BMD) concerns the carrier status of female relatives of an affected male. In about 60% of these patients, deletions of one or more exons of the dystrophin gene can be identified. These deletions preferentially include exon 45, which can be detected by multiplex polymerase chain reaction (PCR) and Southern blot analysis of genomic cosmid clones that map to this critical region. As a new approach for definitive carrier detection, we have performed chromosomal in situ suppression (CISS) hybridization with these cosmid clones in female relatives of four unrelated patients. In normal females, most metaphases showed signals on both×chromosomes, whereas only one×chromosome was labeled in carriers. Our results demonstrate that CISS hybridization can define the carrier status in female relatives of DMD patients exhibiting a deletion in the dystrophin gene
Analysis of chromosome positions in the interphase nucleus of Chinese hamster cells by laser-UV-microirradiation experiments
Unsynchronized cells of an essentially diploid strain of female Chinese hamster cells derived from lung tissue (CHL) were laser-UV-microirradiated (=257 nm) in the nucleus either at its central part or at its periphery. After 7–9 h postincubation with 0.5 mM caffeine, chromosome preparations were made in situ. Twenty-one and 29 metaphase spreads, respectively, with partial chromosome shattering (PCS) obtained after micro-irradiation at these two nuclear sites, were Q-banded and analyzed in detail. A positive correlation was observed between the frequency of damage of chromosomes and both their DNA content and length at metaphase. No significant difference was observed between the frequencies of damage obtained for individual chromosomes at either site of microirradiation. The frequency of joint damage of homologous chromosomes was low as compared to nonhomologous ones. Considerable variation was noted in different cells in the combinations of jointly shattered chromosomes. Evidence which justifies an interpretation of these data in terms of an interphase arrangement of chromosome territories is discussed. Our data strongly argue against somatic pairing as a regular event, and suggest a considerable variability of chromosome positions in different nuclei. However, present data do not exclude the possibility of certain non-random chromosomal arrangements in CHL-nuclei. The interphase chromosome distribution revealed by these experiments is compared with centromere-centromere, centromere-center and angle analyses of metaphase spreads and the relationship between interphase and metaphase arrangements of chromosomes is discussed
- …