4,652 research outputs found
Resolution of Nearly Mass Degenerate Higgs Bosons and Production of Black Hole Systems of Known Mass at a Muon Collider
The direct s-channel coupling to Higgs bosons is 40000 times greater for
muons than electrons; the coupling goes as mass squared. High precision
scanning of the lighter and the higher mass and is thus
possible with a muon collider. The and are expected to be nearly
mass degenerate and to be CP even and odd, respectively. A muon collider could
resolve the mass degeneracy and make CP measurements. The origin of CP
violation in the and meson systems might lie in the the
Higgs bosons. If large extra dimensions exist, black holes with
lifetimes of seconds could be created and observed via Hawking
radiation at the LHC. Unlike proton or electron colliders, muon colliders can
produce black hole systems of known mass. This opens the possibilities of
measuring quantum remnants, gravitons as missing energy, and scanning
production turn on. Proton colliders are hampered by parton distributions and
CLIC by beamstrahlung. The ILC lacks the energy reach.Comment: Latex, 5 pages, 2 figures, proceedings to the DPF 2004: Annual
Meeting of the Division of Particles and Fields of APS, 26 August-31 August
2004, Riverside, CA, US
6D Muon Ionization Cooling with an Inverse Cyclotron
A large admittance sector cyclotron filled with LiH wedges surrounded by
helium or hydrogen gas is explored. Muons are cooled as they spiral
adiabatically into a central swarm. As momentum approaches zero, the momentum
spread also approaches zero. Long bunch trains coalesce. Energy loss is used to
inject the muons into the outer rim of the cyclotron. The density of material
in the cyclotron decreases adiabatically with radius. The sector cyclotron
magnetic fields are transformed into an azimuthally symmetric magnetic bottle
in the center. Helium gas is used to inhibit muonium formation by positive
muons. Deuterium gas is used to allow captured negative muons to escape via the
muon catalyzed fusion process. The presence of ionized gas in the center may
automatically neutralize space charge. When a bunch train has coalesced into a
central swarm, it is ejected axially with an electric kicker pulse.Comment: Five pages. LaTeX, three postscript figure files. To appear in the
AIP Conference Proceedings for COOL05: International Workshop on Beam
Cooling, Galena, IL, 18-23 Sept. 200
A 233 km Tunnel for Lepton and Hadron Colliders
A decade ago, a cost analysis was conducted to bore a 233 km circumference
Very Large Hadron Collider (VLHC) tunnel passing through Fermilab. Here we
outline implementations of , , and collider
rings in this tunnel using recent technological innovations. The 240 and 500
GeV colliders employ Crab Waist Crossings, ultra low emittance damped
bunches, short vertical IP focal lengths, superconducting RF, and low
coercivity, grain oriented silicon steel/concrete dipoles. Some details are
also provided for a high luminosity 240 GeV collider and 1.75 TeV
muon accelerator in a Fermilab site filler tunnel. The 40 TeV
collider uses the high intensity Fermilab source, exploits high cross
sections for production of high mass states, and uses 2 Tesla ultra
low carbon steel/YBCO superconducting magnets run with liquid neon. The 35 TeV
muon ring ramps the 2 Tesla superconducting magnets at 9 Hz every 0.4 seconds,
uses 250 GV of superconducting RF to accelerate muons from 1.75 to 17.5 TeV in
63 orbits with 71% survival, and mitigates neutrino radiation with phase
shifting, roller coaster motion in a FODO lattice.Comment: LaTex, 6 pages, 1 figure, Advanced Accelerator Concepts Workshop,
Austin, TX, 10-15 June 201
Multi-Terabyte EIDE Disk Arrays running Linux RAID5
High-energy physics experiments are currently recording large amounts of data
and in a few years will be recording prodigious quantities of data. New methods
must be developed to handle this data and make analysis at universities
possible. Grid Computing is one method; however, the data must be cached at the
various Grid nodes. We examine some storage techniques that exploit recent
developments in commodity hardware. Disk arrays using RAID level 5 (RAID-5)
include both parity and striping. The striping improves access speed. The
parity protects data in the event of a single disk failure, but not in the case
of multiple disk failures.
We report on tests of dual-processor Linux Software RAID-5 arrays and
Hardware RAID-5 arrays using a 12-disk 3ware controller, in conjunction with
250 and 300 GB disks, for use in offline high-energy physics data analysis. The
price of IDE disks is now less than $1/GB. These RAID-5 disk arrays can be
scaled to sizes affordable to small institutions and used when fast random
access at low cost is important.Comment: Talk from the 2004 Computing in High Energy and Nuclear Physics
(CHEP04), Interlaken, Switzerland, 27th September - 1st October 2004, 4
pages, LaTeX, uses CHEP2004.cls. ID 47, Poster Session 2, Track
Redundant Arrays of IDE Drives
The next generation of high-energy physics experiments is expected to gather
prodigious amounts of data. New methods must be developed to handle this data
and make analysis at universities possible. We examine some techniques that use
recent developments in commodity hardware. We test redundant arrays of
integrated drive electronics (IDE) disk drives for use in offline high-energy
physics data analysis. IDE redundant array of inexpensive disks (RAID) prices
now equal the cost per terabyte of million-dollar tape robots! The arrays can
be scaled to sizes affordable to institutions without robots and used when fast
random access at low cost is important. We also explore three methods of moving
data between sites; internet transfers, hot pluggable IDE disks in FireWire
cases, and writable digital video disks (DVD-R).Comment: Submitted to IEEE Transactions On Nuclear Science, for the 2001 IEEE
Nuclear Science Symposium and Medical Imaging Conference, 8 pages, 1 figure,
uses IEEEtran.cls. Revised March 19, 2002 and published August 200
- …