3 research outputs found

    Oscillator-Based Volatile Detection System Using Doubly- Clamped Micromechanical Resonators

    Get PDF
    AbstractIn this paper, we demonstrate a functionalized and resonant piezo-actuated volatile sensor which is interfaced by electronics for frequency shift detection. Enhanced signal sensing is achieved via the effective feed-through capacitance cancellation scheme. The closed-loop oscillator, realized with off-the-shelf components, attains a frequency stability of 2.7Hz for the 1.8MHz resonant mode of the gas sensor. The sensor was exposed to pulses of water and ethanol vapor mixtures, yielding a temporary dip in resonance frequency as well as volatile-specific recovery times

    Interactions between directly- and parametrically-driven vibration modes in a micromechanical resonator

    No full text
    The interactions between parametrically- and directly-driven vibration modes of a clamped-clamped beam resonator are studied. An integrated piezoelectric transducer is used for direct and parametric excitation. First, the parametric amplification and oscillation of a single mode are analyzed by the power and phase dependence below and above the threshold for parametric oscillation. Then, the motion of a parametrically-driven mode is detected by the induced change in resonance frequency in another mode of the same resonator. The resonance frequency shift is the result of the nonlinear coupling between the modes by the displacement-induced tension in the beam. These nonlinear modal interactions result in the quadratic relation between the resonance frequency of one mode and the amplitude of another mode. The amplitude of a parametrically-oscillating mode depends on the square root of the pump frequency. Combining these dependencies yields a linear relation between the resonance frequency of the directly-driven mode and the frequency of the parametrically-oscillating mode.QN/Quantum NanoscienceApplied Science
    corecore