4 research outputs found

    Survival of the Fittest: Increased Stimulus Competition During Encoding Results in Fewer but More Robust Memory Traces

    Get PDF
    Forgetting can be accounted for by time-indexed decay as well as competition-based interference processes. Although conventionally seen as competing theories of forgetting processes, Altmann and colleagues argued for a functional interaction between decay and interference. They revealed that, in short-term memory, time-based forgetting occurred at a faster rate under conditions of high proactive interference compared to conditions of low proactive interference. However, it is unknown whether interactive effects between decay-based forgetting and interference-based forgetting also exist in long-term memory. We employed a delayed memory recognition paradigm for visual indoor and outdoor scenes, measuring recognition accuracy at two time-points, immediately after learning and after 1 week, while interference was indexed by the number of images in a semantic category. We found that higher levels of interference during encoding led to a slower subsequent decay rate. In contrast to the findings in working-memory, our results suggest that a "survival of the fittest" principle applies to long-term memory processes, in which stimulus competition during encoding results in fewer, but also more robust memory traces, which decay at a slower rate. Conversely, low levels of interference during encoding allow more memory traces to form initially, which, however, subsequently decay at a faster rate. Our findings provide new insights into the mechanism of forgetting and could inform neurobiological models of forgetting

    Category-length and category-strength effects using images of scenes

    Get PDF
    Global matching models have provided an important theoretical framework for recognition memory. Key predictions of this class of models are that (1) increasing the number of occurrences in a study list of some items affects the performance on other items (list-strength effect) and that (2) adding new items results in a deterioration of performance on the other items (list-length effect). Experimental confirmation of these predictions has been difficult, and the results have been inconsistent. A review of the existing literature, however, suggests that robust length and strength effects do occur when sufficiently similar hard-to-label items are used. In an effort to investigate this further, we had participants study lists containing one or more members of visual scene categories (bathrooms, beaches, etc.). Experiments 1 and 2 replicated and extended previous findings showing that the study of additional category members decreased accuracy, providing confirmation of the category-length effect. Experiment 3 showed that repeating some category members decreased the accuracy of nonrepeated members, providing evidence for a category-strength effect. Experiment 4 eliminated a potential challenge to these results. Taken together, these findings provide robust support for global matching models of recognition memory. The overall list lengths, the category sizes, and the number of repetitions used demonstrated that scene categories are well-suited to testing the fundamental assumptions of global matching models. These include (A) interference from memories for similar items and contexts, (B) nondestructive interference, and (C) that conjunctive information is made available through a matching operation

    Survival of the Fittest: Increased Stimulus Competition During Encoding Results in Fewer but More Robust Memory Traces

    Get PDF
    Forgetting can be accounted for by time-indexed decay as well as competition-based interference processes. Although conventionally seen as competing theories of forgetting processes, Altmann and colleagues argued for a functional interaction between decay and interference. They revealed that, in short-term memory, time-based forgetting occurred at a faster rate under conditions of high proactive interference compared to conditions of low proactive interference. However, it is unknown whether interactive effects between decay-based forgetting and interference-based forgetting also exist in long-term memory. We employed a delayed memory recognition paradigm for visual indoor and outdoor scenes, measuring recognition accuracy at two time-points, immediately after learning and after 1 week, while interference was indexed by the number of images in a semantic category. We found that higher levels of interference during encoding led to a slower subsequent decay rate. In contrast to the findings in working-memory, our results suggest that a “survival of the fittest” principle applies to long-term memory processes, in which stimulus competition during encoding results in fewer, but also more robust memory traces, which decay at a slower rate. Conversely, low levels of interference during encoding allow more memory traces to form initially, which, however, subsequently decay at a faster rate. Our findings provide new insights into the mechanism of forgetting and could inform neurobiological models of forgetting
    corecore