20,764 research outputs found

    Optical integral field spectroscopy of the extended line emission around six radio-loud quasars

    Full text link
    We present integral field spectroscopy of a small sample of radio-loud quasars at intermediate redshift (0.26<z<0.60), most of which are associated with large radio sources. All have oxygen line emission extended over tens of kiloparcsecs, and these nebulae display a diverse range in both morphology and kinematic behaviour. Two quasars show 'plumes' of extended line emission, two show a clumpy structure and a further one shows a smooth distribution. There is no clear pattern with regard to the distribution of the ionized gas in relation to the radio source axis; the extended emission-line regions are found both parallel and perpendicular - and also totally unrelated to - the radio axis. The velocity structure of the ionized gas ranges from essentially static to apparent smooth rotation, and in two cases, show a clear association with the radio source. Given the disparity in properties, the nebulae all show a surprisingly similar ionization state, as measured by the extended lines of [OII] and [OIII]. Assuming the gas is ionized by at least the nearby quasar nucleus, we use the emission line ratios to infer a pressure in the ionized gas; in all cases we find it to be at high pressure, suggesting confinement by an external (probably intracluster) medium.Comment: 14 pages, 18 figures, 10 of which are presented separately; accepted for publication in MNRA

    A deep Chandra observation of the cluster environment of the z=1.786 radio galaxy 3C294

    Get PDF
    We report the results from a 200 ks Chandra observation of the z=1.786 radio galaxy 3C294 and its cluster environment, increasing by tenfold our earlier observation. The diffuse emission, extending about 100 kpc around the nucleus, has a roughly hourglass shape in the N-S direction with surprisingly sharp edges to the N and S. The spectrum of the diffuse emission is well fitted by either a thermal model of temperature 3.5 keV and abundance <0.9 solar (2-sigma), or a power-law with photon index 2.3. If the emission is due to hot gas then the sharp edges mean that it is probably not in hydrostatic equilibrium. Much of the emission is plausibly due to inverse Compton scattering of the Cosmic Microwave Background (CMB) by nonthermal electrons produced earlier by the radio source. The required relativistic electrons would be of much lower energy and older than those responsible for the present radio lobes. This could account for the lack of detailed spatial correspondence between the X-rays and the radio emission, the axis of which is at a position angle of about 45 deg. Hot gas would still be required to confine the relativistic plasma; the situation could parallel that of the radio bubbles seen as holes in nearby clusters, except that in 3C294 the bubbles are bright in X-rays owing to the extreme power in the source and the sixty fold increase in the energy density of the CMB. The X-ray spectrum of the radio nucleus is hard, showing a reflection spectrum and iron line. The source is therefore an obscured radio-loud quasar.Comment: In press (MNRAS), 10 pages, 12 figures (2 colour

    VLT near-infrared spectra of hard serendipitous Chandra sources

    Full text link
    We present near-infrared long-slit spectra of eight optically-dim X-ray sources obtained with ISAAC on the Very Large Telescope. Six of the sources have hard X-ray emission with a significant fraction of the counts emerging above 2 keV. All were discovered serendipitously in the fields of three nearby galaxy clusters observed with Chandra, and identified through near-infrared imaging. The X-ray fluxes lie close to the break in the source counts. Two of the sources show narrow emission lines, and a third has a broad line. One of the narrow line-emitting sources has a clear redshift identification at z=2.18, while the other has a tentative determination based on the highest redshift detection of He I 10830 at z=1.26. The remainder have featureless spectra to deep limiting equivalent widths of 20--60 angstroms and line flux approx= 5 x 10^{-17} erg/s/cm^2 in the K-band. High-quality J, H and Ks--band images of the sources were combined with archival optical detections or limits to estimate a photometric redshift for six. Two sources show complex double morphology. The hard sources have spectral count ratios consistent with heavily obscured AGN, while the host galaxy emits much of the optical and near-infrared flux. The most likely explanation for the featureless continua is that the line photons are being scattered or destroyed by optically-thick gas and associated dust with large covering fractions.Comment: Replaced in response to problems with the PDF version of Fig 4 at arxiv.org, but not at the mirror sites (lanl.gov, soton.ac.uk). No content change

    Extended X-ray emission around four 3C quasars at 0.55<z<0.75 observed with Chandra

    Get PDF
    We report on the detection of a soft spatially-extended component of X-ray emission around four intermediate-redshift 3C quasars observed with Chandra: 3C254, 3C263, 3C275.1 and 3C281. The bolometric luminosity of this emission ranges over 0.3-1.6 times 10^{44}erg/s, and extends to lengthscales of over 350 kpc at the redshift of the quasar. The X-rays are most likely thermal emission from the intracluster medium of a cluster of galaxies around each quasar, which provides the working surface for the powerful radio lobes. Some X-ray emission is also seen to be associated with the radio plasma.Comment: 8 pages, 4 panelled figures, MNRAS in pres

    Lensed Arcs and Inner Structure of Abell 697

    Full text link
    We present new optical observations of the z=0.282 cluster Abell 697 from the Keck II telescope. Images show an unusual disturbed structure in the cD halo and a previously unknown faint gravitational lens arc. A spectrum of the arc did not yield a redshift, but its spectrum and colors suggest it lies at z>1.3. We construct models to reproduce the arc that show the potential is likely to be highly elliptical. We suggest that this cluster may have undergone a recent merger and is in the process of forming its cD galaxy. Analysis of X-ray data from ROSAT and ASCA suggests that the merging process is sufficiently advanced that the gas in the cluster has relaxed, and A697 lies near the L_x-T_x relation for normal clusters.Comment: LaTeX; 12 pages, 3 figures, submitted to ApJ Letter

    The Compton-thick quasar at the heart of the high-redshift giant radio galaxy 6C 0905+39

    Full text link
    Our XMM-Newton spectrum of the giant, high-redshift (z=1.88) radio galaxy 6C 0905+39 shows that it contains one of the most powerful, high-redshift, Compton-thick quasars known. Its spectrum is very hard above 2 keV. The steep XMM spectrum below that energy is shown to be due to extended emission from the radio bridge using Chandra data. The nucleus of 6C 0905+39 has a column density of 3.5 (+1.4,-0.4) X 10^24 cm^-2 and absorption-corrected X-ray luminosity of 1.7 (+0.9,-0.1) X 10^45 erg/s in the 2-10 keV band. A lower redshift active galaxy in the same field, SDSS J090808.36+394313.6, may also be Compton-thick.Comment: 5 pages, 5 figures, accepted to MNRA

    Extended X-Ray Emission from QSOs

    Full text link
    We report Chandra ACIS observations of the fields of 4 QSOs showing strong extended optical emission-line regions. Two of these show no evidence for significant extended X-ray emission. The remaining two fields, those of 3C 249.1 and 4C 37.43, show discrete (but resolved) X-ray sources at distances ranging from ~10 to ~40 kpc from the nucleus. In addition, 4C 37.43 also may show a region of diffuse X-ray emission extending out to ~65 kpc and centered on the QSO. It has been suggested that extended emission-line regions such as these may originate in the cooling of a hot intragroup medium. We do not detect a general extended medium in any of our fields, and the upper limits we can place on its presence indicate cooling times of at least a few 10^9 years. The discrete X-ray emission sources we detect cannot be explained as the X-ray jets frequently seen associated with radio-loud quasars, nor can they be due to electron scattering of nuclear emission. The most plausible explanation is that they result from high-speed shocks from galactic superwinds resulting either from a starburst in the QSO host galaxy or from the activation of the QSO itself. Evidence from densities and velocities found from studies of the extended optical emission around QSOs also supports this interpretation.Comment: Accepted by ApJ. 9 pages including 5 figure
    • …
    corecore