4 research outputs found

    Semifluxons in Superconductivity and Cold Atomic Gases

    Full text link
    Josephson junctions and junction arrays are well studied devices in superconductivity. With external magnetic fields one can modulate the phase in a long junction and create traveling, solitonic waves of magnetic flux, called fluxons. Today, it is also possible to device two different types of junctions: depending on the sign of the critical current density, they are called 0- or pi-junction. In turn, a 0-pi junction is formed by joining two of such junctions. As a result, one obtains a pinned Josephson vortex of fractional magnetic flux, at the 0-pi boundary. Here, we analyze this arrangement of superconducting junctions in the context of an atomic bosonic quantum gas, where two-state atoms in a double well trap are coupled in an analogous fashion. There, an all-optical 0-pi Josephson junction is created by the phase of a complex valued Rabi-frequency and we a derive a discrete four-mode model for this situation, which qualitatively resembles a semifluxon.Comment: 15 pages (Latex), 6 color figures (eps

    Quantum tunneling of semifluxons

    Full text link
    We consider a system of two semifluxons of opposite polarity in a 0-pi-0 long Josephson junction, which classically can be in one of two degenerate states: up-down or down-up. When the distance aa between the 0-pi boundaries (semifluxon's centers) is a bit larger than the crossover distance aca_c, the system can switch from one state to the other due to thermal fluctuations or quantum tunneling. We map this problem to the dynamics of a single particle in a double well potential and estimate parameters for which quantum effects emerge. We also determine the classical-to-quantum crossover temperature as well as the tunneling rate (energy level splitting) between the states up-down and down-up.Comment: submitted to PRB, comments/questions are welcom
    corecore