22 research outputs found
Transcriptional changes in mycorrhizal and nonmycorrhizal soybean plants upon infection with the fungal pathogen macrophomina phaseolina
Macrophomina phaseolina is a soil-borne fungal pathogen with a wide host range that causes charcoal rot in soybean [Glycine max (L.) Merr.]. Control of the disease is a challenge, due to the absence of genetic resistance and effective chemical control. Alternative or complementary measures are needed, such as the use of biological control agents, in an integrated approach. Several studies have demonstrated the role of arbuscular mycorrhizal fungi (AMF) in enhancing plant resistance or tolerance to biotic stresses, decreasing the symptoms and pressure caused by various pests and diseases, including M. phaseolina in soybean. However, the specific contribution of AMF in the regulation of the plant response to M. phaseolina remains unclear. Therefore, the objective of the present study was to investigate, under strict in-vitro culture conditions, the global transcriptional changes in roots of premycorrhized soybean plantlets challenged by M. phaseolina (+AMF+Mp) as compared with nonmycorrhizal soybean plantlets (_AMF+Mp). MapMan software was used to distinguish transcriptional changes, with special emphasis on those related to plant defense responses. Soybean genes identified as strongly upregulated during infection by the pathogen included pathogenesis-related proteins, disease-resistance proteins, transcription factors, and secondary metabolismârelated genes, as well as those encoding for signaling hormones. Remarkably, the +AMF+Mp treatment displayed a lower number of upregulated genes as compared with the _AMF+Mp treatment. AMF seemed to counteract or balance costs upon M. phaseolina infection, which could be associated to a negative impact on biomass and seed production. These detailed insights in soybean-AMF interaction help us to understand the complex underlying mechanisms involved in AMF-mediated biocontrol and support the importance of preserving and stimulating the existing plant-AMF associates, via adequate agricultural practices, to optimize their agro-ecological potential.Peer Reviewe
Methods for large-scale production of AM fungi: past, present, and future.
Many different cultivation techniques and inoculum products of the plant-beneficial arbuscular mycorrhizal (AM) fungi have been developed in the last decades. Soil- and substrate-based production techniques as well as substrate-free culture techniques (hydroponics and aeroponics) and in vitro cultivation methods have all been attempted for the large-scale production of AM fungi. In this review, we describe the principal in vivo and in vitro production methods that have been developed so far. We present the parameters that are critical for optimal production, discuss the advantages and disadvantages of the methods, and highlight their most probable sectors of application