15 research outputs found

    Evolution of a Holocene delta driven by episodic sediment delivery and coseismic deformation, Puget Sound, Washington, USA

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Sedimentology 53 (2006): 1211-1228, doi:10.1111/j.1365-3091.2006.00809.x.Episodic, large-volume pulses of volcaniclastic sediment and coseismic subsidence of the coast have influenced the development of a late Holocene delta at southern Puget Sound. Multibeam bathymetry, ground-penetrating radar (GPR) and vibracores were used to investigate the morphologic and stratigraphic evolution of the Nisqually River delta. Two fluvialā€“deltaic facies are recognized on the basis of GPR data and sedimentary characteristics in cores, which suggest partial emplacement from sediment-rich floods that originated on Mount Rainier. Facies S consists of stacked, sheet-like deposits of andesitic sand up to 4 m thick that are continuous across the entire width of the delta. Flat-lying, highly reflective surfaces separate the sand sheets and comprise important facies boundaries. Beds of massive, pumice- and charcoal-rich sand overlie one of the buried surfaces. Organic-rich material from that surface, beneath the massive sand, yielded a radiocarbon age that is time-correlative with a series of known eruptive events that generated lahars in the upper Nisqually River valley. Facies CF consists of linear sandbodies or palaeochannels incised into facies S on the lower delta plain. Radiocarbon ages of wood fragments in the sandy channel-fill deposits also correlate in time to lahar deposits in upstream areas. Intrusive, sand-filled dikes and sills indicate liquefaction caused by post-depositional ground shaking related to earthquakes. Continued progradation of the delta into Puget Sound is currently balanced by tidal-current reworking, which redistributes sediment into large fields of ebb- and flood-oriented bedforms.This study was supported by the Coastal and Marine Geology Program, and the Earthquake Hazards Program of the U.S. Geological Survey

    Evaluation of nonlinear frequency compression: Clinical outcomes

    Get PDF
    This study evaluated prototype multichannel nonlinear frequency compression (NFC) signal processing on listeners with high-frequency hearing loss. This signal processor applies NFC above a cut-off frequency. The participants were hearing-impaired adults (13) and children (11) with sloping, high-frequency hearing loss. Multiple outcome measures were repeated using a modified withdrawal design. These included speech sound detection, speech recognition, and self-reported preference measures. Group level results provide evidence of significant improvement of consonant and plural recognition when NFC was enabled. Vowel recognition did not change significantly. Analysis of individual results allowed for exploration of individual factors contributing to benefit received from NFC processing. Findings suggest that NFC processing can improve high frequency speech detection and speech recognition ability for adult and child listeners. Variability in individual outcomes related to factors such as degree and configuration of hearing loss, age of participant, and type of outcome measure. Ā© 2009 Informa UK Ltd All rights reserved
    corecore