980 research outputs found

    Invariant Lagrangians, mechanical connections and the Lagrange-Poincare equations

    Get PDF
    We deal with Lagrangian systems that are invariant under the action of a symmetry group. The mechanical connection is a principal connection that is associated to Lagrangians which have a kinetic energy function that is defined by a Riemannian metric. In this paper we extend this notion to arbitrary Lagrangians. We then derive the reduced Lagrange-Poincare equations in a new fashion and we show how solutions of the Euler-Lagrange equations can be reconstructed with the help of the mechanical connection. Illustrative examples confirm the theory.Comment: 22 pages, to appear in J. Phys. A: Math. Theor., D2HFest special issu

    Homogeneous variational problems: a minicourse

    Get PDF
    A Finsler geometry may be understood as a homogeneous variational problem, where the Finsler function is the Lagrangian. The extremals in Finsler geometry are curves, but in more general variational problems we might consider extremal submanifolds of dimension mm. In this minicourse we discuss these problems from a geometric point of view.Comment: This paper is a written-up version of the major part of a minicourse given at the sixth Bilateral Workshop on Differential Geometry and its Applications, held in Ostrava in May 201

    Energy-based Analysis of Biochemical Cycles using Bond Graphs

    Full text link
    Thermodynamic aspects of chemical reactions have a long history in the Physical Chemistry literature. In particular, biochemical cycles - the building-blocks of biochemical systems - require a source of energy to function. However, although fundamental, the role of chemical potential and Gibb's free energy in the analysis of biochemical systems is often overlooked leading to models which are physically impossible. The bond graph approach was developed for modelling engineering systems where energy generation, storage and transmission are fundamental. The method focuses on how power flows between components and how energy is stored, transmitted or dissipated within components. Based on early ideas of network thermodynamics, we have applied this approach to biochemical systems to generate models which automatically obey the laws of thermodynamics. We illustrate the method with examples of biochemical cycles. We have found that thermodynamically compliant models of simple biochemical cycles can easily be developed using this approach. In particular, both stoichiometric information and simulation models can be developed directly from the bond graph. Furthermore, model reduction and approximation while retaining structural and thermodynamic properties is facilitated. Because the bond graph approach is also modular and scaleable, we believe that it provides a secure foundation for building thermodynamically compliant models of large biochemical networks

    Homogeneity and projective equivalence of differential equation fields

    Get PDF
    We propose definitions of homogeneity and projective equivalence for systems of ordinary differential equations of order greater than two, which allow us to generalize the concept of a spray (for systems of order two). We show that the Euler-Lagrange fields of parametric Lagrangians of order greater than one which are regular (in a natural sense that we define) form a projective equivalence class of homogeneous systems. We show further that the geodesics, or base integral curves, of projectively equivalent homogeneous differential equation fields are the same apart from orientation-preserving reparametrization; that is, homogeneous differential equation fields determine systems of paths

    Holonomy of a class of bundles with fibre metrics

    Get PDF
    This paper is concerned with the holonomy of a class of spaces which includes Landsberg spaces of Finsler geometry. The methods used are those of Lie groupoids and algebroids as developed by Mackenzie. We prove a version of the Ambrose-Singer Theorem for such spaces. The paper ends with a discussion of how the results may be extended to Finsler spaces and homogeneous nonlinear connections in general

    Reaction-diffusion models for biological pattern formation

    Get PDF
    We consider the use of reaction-diffusion equations to model biological pattern formation and describe the derivation of the reaction-terms for several illustrative examples. After a brief discussion of the Turing instability in such systems we extend the model formulation to incorporate domain growth. Comparisons are drawn between solution behaviour on growing domains and recent results on self-replicating patterns on domains of fixed size
    corecore