163 research outputs found
Selective Sampling with Drift
Recently there has been much work on selective sampling, an online active
learning setting, in which algorithms work in rounds. On each round an
algorithm receives an input and makes a prediction. Then, it can decide whether
to query a label, and if so to update its model, otherwise the input is
discarded. Most of this work is focused on the stationary case, where it is
assumed that there is a fixed target model, and the performance of the
algorithm is compared to a fixed model. However, in many real-world
applications, such as spam prediction, the best target function may drift over
time, or have shifts from time to time. We develop a novel selective sampling
algorithm for the drifting setting, analyze it under no assumptions on the
mechanism generating the sequence of instances, and derive new mistake bounds
that depend on the amount of drift in the problem. Simulations on synthetic and
real-world datasets demonstrate the superiority of our algorithms as a
selective sampling algorithm in the drifting setting
- …