95 research outputs found

    Enhanced photodynamic destruction of a transplantable fibrosarcoma using photochemical internalisation of gelonin

    Get PDF
    Photochemical internalisation (PCI) is a technique for releasing biologically active macromolecules from endocytic vesicles by light activation of a photosensitiser localised in the same vesicles of targeted cells. This study investigated the PCI of the toxin gelonin as a way of enhancing the effect of photodynamic therapy (PDT) on a human malignant fibrous histiocytoma transplanted into nude mice using the photosensitiser disulphonated aluminium phthalocyanine (AlPcS2a). Pharmacokinetic studies after intraperitoneal administration showed that the serum level of AlPcS2a fitted a biexponential model (half-lives of 1.8 and 26.7 h). The tumour concentration was roughly constant up to 48 h, although fluorescence microscopy showed that the drug location was initially mainly vascular, but became intracellular by 48 h. To compare PDT with PCI, 48 h after intraperitoneal injection of 10 mg kg−1 AlPcS2a, and 6 h after direct intratumour injection of 50 μg gelonin (PCI) or a similar volume of phosphate-buffered saline (PDT controls), tumour-bearing animals were exposed to red light (150 J cm−2). Complete response was observed for more than 100 days in 50% of the PCI tumours but only 10% of the PDT tumours (P<0.01). In tumours examined histologically 4 days after light delivery, the depth of necrosis was 3–4 mm after PDT, but 7 mm after PCI. The deeper effect after PCI demonstrates that the light fluence needed to kill tumour is less than with PDT. We conclude that PCI with gelonin can markedly enhance the effect of PDT on this type of tumour and may have a role clinically as an adjunct to surgery to control localised disease

    In vivo quantification of photosensitizer fluorescence in the skin-fold observation chamber using dual-wavelength excitation and NIR imaging

    Get PDF
    A major challenge in biomedical optics is the accurate quantification of in vivo fluorescence images. Fluorescence imaging is often used to determine the pharmacokinetics of photosensitizers used for photodynamic therapy. Often, however, this type of imaging does not take into account differences in and changes to tissue volume and optical properties of the tissue under interrogation. To address this problem, a ratiometric quantification method was developed and applied to monitor photosensitizer meso-tetra (hydroxyphenyl) chlorin (mTHPC) pharmacokinetics in the rat skin-fold observation chamber. The method employs a combination of dual-wavelength excitation and dualwavelength detection. Excitation and detection wavelengths were selected in the NIR region. One excitation wavelength was chosen to be at the Q band of mTHPC, whereas the second excitation wavelength was close to its absorption minimum. Two fluorescence emission bands were used; one at the secondary fluorescence maximum of mTHPC centered on 720 nm, and one in a region of tissue autofluorescence. The first excitation wavelength was used to excite the mTHPC and autofluorescence and the second to excite only autofluorescence, so that this could be subtracted. Subsequently, the autofluorescence-corrected mTHPC image was divided by the autofluorescence signal to correct for variations in tissue optical properties. This correction algorithm in principle results in a linear relation between the corrected fluorescence and photosensitizer concentration. The limitations of the presented method and comparison with previously published and validated techniques are discussed

    Th1 type lymphocyte reactivity to metals in patients with total hip arthroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>All prostheses with metallic components release metal debris that can potentially activate the immune system. However, implant-related metal hyper-reactivity has not been well characterized. In this study, we hypothesized that adaptive immunity reaction(s), particularly T-helper type 1 (Th1) responses, will be dominant in any metal-reactivity responses of patients with total joint replacements (TJAs). We tested this hypothesis by evaluating lymphocyte reactivity to metal "ions" in subjects with and without total hip replacements, using proliferation assays and cytokine analysis.</p> <p>Methods</p> <p>Lymphocytes from young healthy individuals without an implant or a history of metal allergy (Group 1: n = 8) were used to assess lymphocyte responses to metal challenge agents. In addition, individuals (Group 2: n = 15) with well functioning total hip arthroplasties (average Harris Hip Score = 91, average time in-situ 158 months) were studied. Age matched controls with no implants were also used for comparison (Group 3, n = 8, 4 male, 4 female average age 70, range 49–80). Group 1 subjects' lymphocyte proliferation response to Aluminum<sup>+3</sup>, Cobalt<sup>+2</sup>, Chromium<sup>+3</sup>, Copper<sup>+2</sup>, Iron<sup>+3</sup>, Molybdenum<sup>+5</sup>, Manganeese<sup>+2</sup>, Nickel<sup>+2</sup>, Vanadium<sup>+3 </sup>and Sodium<sup>+2 </sup>chloride solutions at a variety of concentrations (0.0, 0.05, 0.1, 0.5, 1.0 and 10.0 mM) was studied to establish toxicity thresholds. Mononuclear cells from Group 2 and 3 subjects were challenged with 0.1 mM CrCl<sub>3</sub>, 0.1 mM NiCl<sub>2</sub>, 0.1 mM CoCl<sub>2 </sub>and approx. 0.001 mM titanium and the reactions measured with proliferation assays and cytokine analysis to determine T-cell subtype prominence.</p> <p>Results</p> <p>Primary lymphocytes from patients with well functioning total hip replacements demonstrated a higher incidence and greater magnitude of reactivity to chromium than young healthy controls (p < 0.03). Of the 15 metal ion-challenged subjects with well functioning total hip arthroplasties, 7 demonstrated a proliferative response to Chromium, Nickel, Cobalt and/or Titanium (as defined by a statistically significant >2 fold stimulation index response, p < 0.05) and were designated as metal-reactive. Metals such as Cobalt, Copper, Manganese, and Vanadium were toxic at concentrations as low as 0.5 mM while other metals, such as Aluminum, Chromium, Iron, Molybdenum, and Nickel, became toxic at much higher concentrations (>10 mM). The differential secretion of signature T-cell subsets' cytokines (Th1 and Th2 lymphocytes releasing IFN-gamma and IL-4, respectively) between those total hip arthroplasty subjects which demonstrated metal-reactivity and those that did not, indicated a Th1 type (IFN-gamma) pro-inflammatory response.</p> <p>Conclusion</p> <p>Elevated proliferation and production of IFN-gamma to metals in hip arthroplasty subjects' lymphocytes indicates that a Th1 (vs. Th2) type response is likely associated with any metal induced reactivity. The involvement of an elevated and specific lymphocyte response suggests an <it>adaptive </it>(macrophage recruiting) immunity response to metallic implant debris rather than an <it>innate </it>(nonspecific) immune response.</p

    An analysis of coating-efficiency as a measure for capillary column performance An Analysis of Coating-Efficiency as a Measure for Capillary Column Performance

    No full text
    Summary An expression is proposed for the value of the CoatingEfficiency C.E. starting from the Golay-equation, extended to situations of appreciable pressure drop by Giddings. A comparison is made between the coatingefficiency following this theory and the simplified expression for coating-efficiency as generally used in the literature, that neglects the effects of resistance to mass transfer in the liquid phase and the pressure drop. It is shown that the complete equation from the coatingefficiency explains the observations made in practice. Application of the theory described will lead to a better check on ffdm formation in capillary columns
    corecore