2 research outputs found

    Exercise and myocardial injury in hypertrophic cardiomyopathy

    Get PDF
    Objective: Troponin and high signal intensity on T2-weighted (HighT2) cardiovascular magnetic resonance imaging (CMRi) are both markers of myocardial injury in hypertrophic cardiomyopathy (HCM). The interplay between exercise and disease development remains uncertain in HCM. We sought to assess the occurrence of postexercise troponin rises and its determinants. Methods: Multicentre project on patients with HCM and mutation carriers without hypertrophy (controls). Participants performed a symptom limited bicycle test with hs-cTnT assessment pre-exercise and 6 hours postexercise. Pre-exercise CMRi was performed in patients with HCM to assess measures of hypertrophy and myocardial injury. Depending on baseline troponin (13 ng/L), a rise was defined as a >50% or >20% increase, respectively. Results: Troponin rises occurred in 18% (23/127) of patients with HCM and 4% (2/53) in mutation carriers (p=0.01). Comparing patients with HCM with and without a postexercise troponin rise, maximum heart rates (157±19 vs 143±23, p=0.004) and maximal wall thickness (20 mm vs 17 mm, p=0.023) were higher in the former, as was the presence of late gadolinium enhancement (85% vs 57%, p=0.02). HighT2 was seen in 65% (13/20) and 19% (15/79), respectively (p<0.001). HighT2 was the only independent predictor of troponin rise (adjusted odds ratio 7.9; 95% CI 2.7 to 23.3; p<0.001). Conclusions: Postexercise troponin rises were seen in about 20% of patients with HCM, almost five times more frequent than in mutation carriers. HighT2 on CMRi may identify a group of particularly vulnerable patients, supporting the concept that HighT2 reflects an active disease state, prone to additional injury after a short episode of high oxygen demand

    High T2-weighted signal intensity for risk prediction of sudden cardiac death in hypertrophic cardiomyopathy

    Get PDF
    In search of improved risk stratification in hypertrophic cardiomyopathy (HCM), CMR imaging has been implicated as a potential tool for prediction of sudden cardiac death (SCD). In follow-up of the promising results with extensive late gadolinium enhancement (LGE), high signal-intensity on T2-weighted imaging (HighT2) has become subject of interest given its association with markers of adverse disease progression, such as LGE, elevated troponin and non-sustained ventricular tachycardia. In lack of follow-up cohorts, we initiated an exploratory study on the association between HighT2 and the internationally defined risk categories of SCD. In a cohort of 109 HCM patients from a multicenter study on CMR imaging and biomarkers, we estimated the 5-year SCD risk (HCM Risk-SCD model). Patients were categorized as low (< 4%), intermediate (≥ 4–<6%) or high (≥ 6%) risk. In addition, risk categorization according to the ACC/AHA guidelines was performed. HighT2 was present in 27% (29/109). Patients with HighT2 were more often at an intermediate-high risk of SCD according to the European (28 vs. 10%, p = .032) and American guidelines (41 vs. 18%, p = .010) compared to those without HighT2. The estimated 5-year SCD risk of our cohort was 1.9% (IQR 1.3–2.9%), and projected SCD rates were higher in patients with than without HighT2 (2.8 vs. 1.8%, p = .002). In conclusion, HCM patients with HighT2 were more likely to be intermediate-high risk, with projected SCD rates that were 1.5 fold higher than in patients without HighT2. These pilot findings call for corroborative studies with more intermediate-high risk HCM patients and clinical fo
    corecore