707 research outputs found
Optimal evaluation of single-molecule force spectroscopy experiments
The forced rupture of single chemical bonds under external load is addressed.
A general framework is put forward to optimally utilize the experimentally
observed rupture force data for estimating the parameters of a theoretical
model. As an application we explore to what extent a distinction between
several recently proposed models is feasible on the basis of realistic
experimental data sets.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev.
Chains of large gaps between primes
Let denote the -th prime, and for any and sufficiently
large , define the quantity which measures the occurrence of
chains of consecutive large gaps of primes. Recently, with Green and
Konyagin, the authors showed that for sufficiently large . In this
note, we combine the arguments in that paper with the Maier matrix method to
show that for any fixed and sufficiently large . The
implied constant is effective and independent of .Comment: 16 pages, no figure
Optimal phase measurements with pure Gaussian states
We analyze the Heisenberg limit on phase estimation for Gaussian states. In
the analysis, no reference to a phase operator is made. We prove that the
squeezed vacuum state is the most sensitive for a given average photon number.
We provide two adaptive local measurement schemes that attain the Heisenberg
limit asymptotically. One of them is described by a positive operator-valued
measure and its efficiency is exhaustively explored. We also study Gaussian
measurement schemes based on phase quadrature measurements. We show that
homodyne tomography of the appropriate quadrature attains the Heisenberg limit
for large samples. This proves that this limit can be attained with local
projective Von Neuman measurements.Comment: 9 pages. Revised version: two new sections added, revised
conclusions. Corrected prose. Corrected reference
Using simulation studies to evaluate statistical methods
Simulation studies are computer experiments that involve creating data by
pseudorandom sampling. The key strength of simulation studies is the ability to
understand the behaviour of statistical methods because some 'truth' (usually
some parameter/s of interest) is known from the process of generating the data.
This allows us to consider properties of methods, such as bias. While widely
used, simulation studies are often poorly designed, analysed and reported. This
tutorial outlines the rationale for using simulation studies and offers
guidance for design, execution, analysis, reporting and presentation. In
particular, this tutorial provides: a structured approach for planning and
reporting simulation studies, which involves defining aims, data-generating
mechanisms, estimands, methods and performance measures ('ADEMP'); coherent
terminology for simulation studies; guidance on coding simulation studies; a
critical discussion of key performance measures and their estimation; guidance
on structuring tabular and graphical presentation of results; and new graphical
presentations. With a view to describing recent practice, we review 100
articles taken from Volume 34 of Statistics in Medicine that included at least
one simulation study and identify areas for improvement.Comment: 31 pages, 9 figures (2 in appendix), 8 tables (1 in appendix
Mixed state Pauli channel parameter estimation
The accuracy of any physical scheme used to estimate the parameter describing
the strength of a single qubit Pauli channel can be quantified using standard
techniques from quantum estimation theory. It is known that the optimal
estimation scheme, with m channel invocations, uses initial states for the
systems which are pure and unentangled and provides an uncertainty of
O[1/m^(1/2)]. This protocol is analogous to a classical repetition and
averaging scheme. We consider estimation schemes where the initial states
available are not pure and compare a protocol involving quantum correlated
states to independent state protocols analogous to classical repetition
schemes. We show, that unlike the pure state case, the quantum correlated state
protocol can yield greater estimation accuracy than any independent state
protocol. We show that these gains persist even when the system states are
separable and, in some cases, when quantum discord is absent after channel
invocation. We describe the relevance of these protocols to nuclear magnetic
resonance measurements
MintHint: Automated Synthesis of Repair Hints
Being able to automatically repair programs is an extremely challenging task.
In this paper, we present MintHint, a novel technique for program repair that
is a departure from most of today's approaches. Instead of trying to fully
automate program repair, which is often an unachievable goal, MintHint performs
statistical correlation analysis to identify expressions that are likely to
occur in the repaired code and generates, using pattern-matching based
synthesis, repair hints from these expressions. Intuitively, these hints
suggest how to rectify a faulty statement and help developers find a complete,
actual repair. MintHint can address a variety of common faults, including
incorrect, spurious, and missing expressions.
We present a user study that shows that developers' productivity can improve
manyfold with the use of repair hints generated by MintHint -- compared to
having only traditional fault localization information. We also apply MintHint
to several faults of a widely used Unix utility program to further assess the
effectiveness of the approach. Our results show that MintHint performs well
even in situations where (1) the repair space searched does not contain the
exact repair, and (2) the operational specification obtained from the test
cases for repair is incomplete or even imprecise
Optimal phase estimation for qubit mixed states
We address the problem of optimal estimation of the relative phase for
two-dimensional quantum systems in mixed states. In particular, we derive the
optimal measurement procedures for an arbitrary number of qubits prepared in
the same mixed state.Comment: revised version accepted for publicatio
Density of States of Quantum Spin Systems from Isotropic Entanglement
We propose a method which we call "Isotropic Entanglement" (IE), that
predicts the eigenvalue distribution of quantum many body (spin) systems (QMBS)
with generic interactions. We interpolate between two known approximations by
matching fourth moments. Though, such problems can be QMA-complete, our
examples show that IE provides an accurate picture of the spectra well beyond
what one expects from the first four moments alone. We further show that the
interpolation is universal, i.e., independent of the choice of local terms.Comment: 4+ pages, content is as in the published versio
Hierarchy of measurement-induced Fisher information for composite states
Quantum Fisher information, as an intrinsic quantity for quantum states, is a
central concept in quantum detection and estimation. When quantum measurements
are performed on quantum states, classical probability distributions arise,
which in turn lead to classical Fisher information. In this article, we exploit
the classical Fisher information induced by quantum measurements, and reveal a
rich hierarchical structure of such measurement-induced Fisher information. We
establish a general framework for the distribution and transfer of the Fisher
information. In particular, we illustrate three extremal distribution types of
the Fisher information: the locally owned type, the locally inaccessible type,
and the fully shared type. Furthermore, we indicate the significant role played
by the distribution and flow of the Fisher information in some physical
problems, e.g., the non-Markovianity of open quantum processes, the
environment-assisted metrology, the cloning and broadcasting, etc.Comment: 6 page
Entanglement enhanced atomic gyroscope
The advent of increasingly precise gyroscopes has played a key role in the
technological development of navigation systems. Ring-laser and fibre-optic
gyroscopes, for example, are widely used in modern inertial guidance systems
and rely on the interference of unentangled photons to measure mechanical
rotation. The sensitivity of these devices scales with the number of particles
used as . Here we demonstrate how, by using sources of entangled
particles, it is possible to do better and even achieve the ultimate limit
allowed by quantum mechanics where the precision scales as 1/N. We propose a
gyroscope scheme that uses ultra-cold atoms trapped in an optical ring
potential.Comment: 19 pages, 2 figure
- …