5 research outputs found

    Structure-Activity Relationships in Human Toll-like Receptor 2- Specific Monoacyl Lipopeptides

    Get PDF
    Toll-like receptor 2-agonistic lipopeptides typified by S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (PAM2CS) compounds are potential vaccine adjuvants. We had previously determined that at least one acyl group of optimal length (C16) and an appropriately orientated ester carbonyl group is essential for TLR2-agonistic activity. We now show that these structurally simpler analogues display agonistic activities with human, but not murine TLR2. SAR studies on the monoacyl derivatives show that the optimal acyl chain length is C16, and aryl substituents are not tolerated. A variety of alkyl and acyl substituents on the cysteine amine were examined. All N-alkyl derivatives were inactive. In contradistinction, short-chain N-acyl analogues were found to be highly active, with a clear dependence on the chain length. A cysteine N-acetyl analogue was found to be the most potent (EC50: 1 nM), followed by the N-butyryl analogue. The N-acetyl analogue is human TLR2-specific, with its potency comparable to that of PAM2CS

    Structure-Activity Relationships in Toll-like Receptor 2-Agonists Leading to Simplified Monoacyl Lipopeptides

    Get PDF
    Toll-like receptor 2-agonistic lipopeptides typified by S-[2,3-bis(palmitoyloxy)-(2RS)-propyl]-R-cysteinyl-S-serine (PAM2CS) compounds are potential vaccine adjuvants. In continuation of previously reported structure-activity relationships on this chemotype, we have determined that at least one acyl group of optimal length (C16) and an appropriately orientated ester carbonyl group is essential for TLR2-agonistic activity. The spacing between one of the palmitoyl ester carbonyl and the thioether is crucial to allow for an important H-bond, which observed in the crystal structure of the lipopeptide:TLR2 complex; consequently, activity is lost in homologated compounds. Penicillamine-derived analogues are also inactive, likely due to unfavorable steric interactions with the carbonyl of Ser 12 in TLR2. The thioether in this chemotype can be replaced with a selenoether. Importantly, the thioglycerol motif can be dispensed with altogether, and can be replaced with a thioethanol bridge. These results have led to a structurally simpler, synthetically more accessible, and water-soluble analogue possessing strong TLR2-agonistic activities in human blood
    corecore