416 research outputs found
Inter-areal coordination of columnar architectures during visual cortical development
The occurrence of a critical period of plasticity in the visual cortex has
long been established, yet its function in normal development is not fully
understood. Here we show that as the late phase of the critical period unfolds,
different areas of cat visual cortex develop in a coordinated manner.
Orientation columns in areas V1 and V2 become matched in size in regions that
are mutually connected. The same age trend is found for such regions in the
left and right brain hemisphere. Our results indicate that a function of
critical period plasticity is to progressively coordinate the functional
architectures of different cortical areas - even across hemispheres.Comment: 30 pages, 1 table, 6 figure
Recommended from our members
Simultaneous mesoscopic and two-photon imaging of neuronal activity in cortical circuits.
Spontaneous and sensory-evoked activity propagates across varying spatial scales in the mammalian cortex, but technical challenges have limited conceptual links between the function of local neuronal circuits and brain-wide network dynamics. We present a method for simultaneous cellular-resolution two-photon calcium imaging of a local microcircuit and mesoscopic widefield calcium imaging of the entire cortical mantle in awake mice. Our multi-scale approach involves a microscope with an orthogonal axis design where the mesoscopic objective is oriented above the brain and the two-photon objective is oriented horizontally, with imaging performed through a microprism. We also introduce a viral transduction method for robust and widespread gene delivery in the mouse brain. These approaches allow us to identify the behavioral state-dependent functional connectivity of pyramidal neurons and vasoactive intestinal peptide-expressing interneurons with long-range cortical networks. Our imaging system provides a powerful strategy for investigating cortical architecture across a wide range of spatial scales
Pinwheel stabilization by ocular dominance segregation
We present an analytical approach for studying the coupled development of
ocular dominance and orientation preference columns. Using this approach we
demonstrate that ocular dominance segregation can induce the stabilization and
even the production of pinwheels by their crystallization in two types of
periodic lattices. Pinwheel crystallization depends on the overall dominance of
one eye over the other, a condition that is fulfilled during early cortical
development. Increasing the strength of inter-map coupling induces a transition
from pinwheel-free stripe solutions to intermediate and high pinwheel density
states.Comment: 10 pages, 4 figure
Visualization and Manipulation of Neural Activity in the Developing Vertebrate Nervous System
Neural activity during vertebrate development has been unambiguously shown to play a critical role in sculpting circuit formation and function. Patterned neural activity in various parts of the developing nervous system is thought to modulate neurite outgrowth, axon targeting, and synapse refinement. The nature and role of patterned neural activity during development has been classically studied with in vitro preparations using pharmacological manipulations. In this review we discuss newly available and developing molecular–genetic tools for the visualization and manipulation of neural activity patterns specifically during development
Reorganization of columnar architecture in the growing visual cortex
Many cortical areas increase in size considerably during postnatal
development, progressively displacing neuronal cell bodies from each other. At
present, little is known about how cortical growth affects the development of
neuronal circuits. Here, in acute and chronic experiments, we study the layout
of ocular dominance (OD) columns in cat primary visual cortex (V1) during a
period of substantial postnatal growth. We find that despite a considerable
size increase of V1, the spacing between columns is largely preserved. In
contrast, their spatial arrangement changes systematically over this period.
While in young animals columns are more band-like, layouts become more
isotropic in mature animals. We propose a novel mechanism of growth-induced
reorganization that is based on the `zigzag instability', a dynamical
instability observed in several inanimate pattern forming systems. We argue
that this mechanism is inherent to a wide class of models for the
activity-dependent formation of OD columns. Analyzing one member of this class,
the Elastic Network model, we show that this mechanism can account for the
preservation of column spacing and the specific mode of reorganization of OD
columns that we observe. We conclude that neurons systematically shift their
selectivities during normal development and that this reorganization is induced
by the cortical expansion during growth. Our work suggests that cortical
circuits remain plastic for an extended period in development in order to
facilitate the modification of neuronal circuits to adjust for cortical growth.Comment: 8+13 pages, 4+8 figures, paper + supplementary materia
c-di-GMP modulates type IV MSHA pilus retraction and surface attachment in Vibrio cholerae.
Biofilm formation by Vibrio cholerae facilitates environmental persistence, and hyperinfectivity within the host. Biofilm formation is regulated by 3',5'-cyclic diguanylate (c-di-GMP) and requires production of the type IV mannose-sensitive hemagglutinin (MSHA) pilus. Here, we show that the MSHA pilus is a dynamic extendable and retractable system, and its activity is directly controlled by c-di-GMP. The interaction between c-di-GMP and the ATPase MshE promotes pilus extension, whereas low levels of c-di-GMP correlate with enhanced retraction. Loss of retraction facilitated by the ATPase PilT increases near-surface roaming motility, and impairs initial surface attachment. However, prolonged retraction upon surface attachment results in reduced MSHA-mediated surface anchoring and increased levels of detachment. Our results indicate that c-di-GMP directly controls MshE activity, thus regulating MSHA pilus extension and retraction dynamics, and modulating V. cholerae surface attachment and colonization
Recommended from our members
Rapid fluctuations in functional connectivity of cortical networks encode spontaneous behavior
Experimental work across species has demonstrated that spontaneously generated behaviors are robustly coupled to variations in neural activity within the cerebral cortex. Functional magnetic resonance imaging data suggest that temporal correlations in cortical networks vary across distinct behavioral states, providing for the dynamic reorganization of patterned activity. However, these data generally lack the temporal resolution to establish links between cortical signals and the continuously varying fluctuations in spontaneous behavior observed in awake animals. Here, we used wide-field mesoscopic calcium imaging to monitor cortical dynamics in awake mice and developed an approach to quantify rapidly time-varying functional connectivity. We show that spontaneous behaviors are represented by fast changes in both the magnitude and correlational structure of cortical network activity. Combining mesoscopic imaging with simultaneous cellular-resolution two-photon microscopy demonstrated that correlations among neighboring neurons and between local and large-scale networks also encode behavior. Finally, the dynamic functional connectivity of mesoscale signals revealed subnetworks not predicted by traditional anatomical atlas-based parcellation of the cortex. These results provide new insights into how behavioral information is represented across the neocortex and demonstrate an analytical framework for investigating time-varying functional connectivity in neural networks
A Digital Atlas to Characterize the Mouse Brain Transcriptome
Massive amounts of data are being generated in an effort to represent for the brain the expression of all genes at cellular resolution. Critical to exploiting this effort is the ability to place these data into a common frame of reference. Here we have developed a computational method for annotating gene expression patterns in the context of a digital atlas to facilitate custom user queries and comparisons of this type of data. This procedure has been applied to 200 genes in the postnatal mouse brain. As an illustration of utility, we identify candidate genes that may be related to Parkinson disease by using the expression of a dopamine transporter in the substantia nigra as a search query pattern. In addition, we discover that transcription factor Rorb is down-regulated in the barrelless mutant relative to control mice by quantitative comparison of expression patterns in layer IV somatosensory cortex. The semi-automated annotation method developed here is applicable to a broad spectrum of complex tissues and data modalities
Presynaptic adenosine receptor-mediated regulation of diverse thalamocortical short-term plasticity in the mouse whisker pathway
Short-term synaptic plasticity (STP) sets the sensitivity of a synapse to incoming activity and determines the temporal patterns that it best transmits. In “driver” thalamocortical (TC) synaptic populations, STP is dominated by depression during stimulation from rest. However, during ongoing stimulation, lemniscal TC connections onto layer 4 neurons in mouse barrel cortex express variable STP. Each synapse responds to input trains with a distinct pattern of depression or facilitation around its mean steady-state response. As a result, in common with other synaptic populations, lemniscal TC synapses express diverse rather than uniform dynamics, allowing for a rich representation of temporally varying stimuli. Here, we show that this STP diversity is regulated presynaptically. Presynaptic adenosine receptors of the A1R type, but not kainate receptors (KARs), modulate STP behavior. Blocking the receptors does not eliminate diversity, indicating that diversity is related to heterogeneous expression of multiple mechanisms in the pathway from presynaptic calcium influx to neurotransmitter release
- …