3 research outputs found

    Near-field microwave addressing of trapped-ion qubits for scalable quantum computation

    No full text
    This thesis reports high-fidelity near-field spatial microwave addressing of long-lived 43Ca+ "atomic clock" qubits performed in a two-zone single-layer surface-electrode ion trap. Addressing is implemented by using two of the trap's integrated microwave electrodes, one in each zone, to drive single-qubit rotations in the zone we choose to address whilst interferometrically cancelling the microwave field at the neighbour (non-addressed) zone. Using this field-nulling scheme, we measure a Rabi frequency ratio between addressed and non-addressed zones of up to 1400, from which we calculate an addressing error (or a spin-flip probability on the qubit transition) of 1e-6. Off-resonant excitation out of the qubit state is a more significant source of error in this experiment, but we also demonstrate polarisation control of the microwave field at an error level of 2e-5, which, if combined with individual-ion addressing, would be sufficient to suppress off-resonant excitation errors to the 1e-9 level. Further, this thesis presents preliminary results obtained with a micron-scale coupled-microstrip differential antenna probe that can be scanned over an ion-trap chip to map microwave magnetic near fields. The probe is designed to enable the measurement of fields at tens of microns above electrode surfaces and to act as an effective characterisation tool, speeding up design-fabrication-characterisation cycles in the production of new prototype microwave ion-trap chips. Finally, a new multi-layer design for an ion-trap chip which displays, in simulations, a 100-fold improvement in addressing performance, is presented. The chip electrode structure is designed to use the cancelling effect of microwave return currents to produce Rabi frequency ratios of order 1000 between trap zones using a single microwave electrode (i.e. without the need for nulling fields). If realised, this chip could be used to drive individually addressed single-qubit operations on arrays of memory qubits in parallel and with high fidelity.</p

    Near-field microwave addressing of trapped-ion qubits for scalable quantum computation

    No full text
    This thesis reports high-fidelity near-field spatial microwave addressing of long-lived 43Ca+ "atomic clock" qubits performed in a two-zone single-layer surface-electrode ion trap. Addressing is implemented by using two of the trap's integrated microwave electrodes, one in each zone, to drive single-qubit rotations in the zone we choose to address whilst interferometrically cancelling the microwave field at the neighbour (non-addressed) zone. Using this field-nulling scheme, we measure a Rabi frequency ratio between addressed and non-addressed zones of up to 1400, from which we calculate an addressing error (or a spin-flip probability on the qubit transition) of 1e-6. Off-resonant excitation out of the qubit state is a more significant source of error in this experiment, but we also demonstrate polarisation control of the microwave field at an error level of 2e-5, which, if combined with individual-ion addressing, would be sufficient to suppress off-resonant excitation errors to the 1e-9 level. Further, this thesis presents preliminary results obtained with a micron-scale coupled-microstrip differential antenna probe that can be scanned over an ion-trap chip to map microwave magnetic near fields. The probe is designed to enable the measurement of fields at tens of microns above electrode surfaces and to act as an effective characterisation tool, speeding up design-fabrication-characterisation cycles in the production of new prototype microwave ion-trap chips. Finally, a new multi-layer design for an ion-trap chip which displays, in simulations, a 100-fold improvement in addressing performance, is presented. The chip electrode structure is designed to use the cancelling effect of microwave return currents to produce Rabi frequency ratios of order 1000 between trap zones using a single microwave electrode (i.e. without the need for nulling fields). If realised, this chip could be used to drive individually addressed single-qubit operations on arrays of memory qubits in parallel and with high fidelity.</p

    High-fidelity spatial addressing of Ca-43 qubits using near-field microwave control

    No full text
    Individual addressing of qubits is essential for scalable quantum computation. Spatial addressing allows unlimited numbers of qubits to share the same frequency, whilst enabling arbitrary parallel operations. We demonstrate addressing of long-lived 43Ca+^{43}\text{Ca}^+ "atomic clock" qubits held in separate zones of a microfabricated surface trap with integrated microwave electrodes. By coherently cancelling the microwave field in one zone we measure a ratio of Rabi frequencies between addressed and non-addressed qubits of up to 1400, implying an addressing error of 1.3×10−61.3\times 10^{-6}. Off-resonant excitation prevents this error level being directly demonstrated, but we also show polarization control of the microwave field with error 2×10−52\times 10^{-5}, sufficient to suppress off-resonant excitation out of the qubit states to the ∼10−9\sim 10^{-9} level. Such polarization control could enable fast microwave operations
    corecore