22 research outputs found

    At Sea Test 2 recovery cruise : Cruise 206 on board R/V Knorr April 10 - 15, 2012 Woods Hole - Woods Hole, MA

    Get PDF
    The R/V Knorr, on Cruise 206, carried out the recovery of three moorings for the Coastal and Global Scale Nodes (CGSN) Implementing Organization of the NSF Ocean Observatories Initiative. These three moorings are prototypes of the moorings to be used by CGSN at the Pioneer, Endurance, and Global Arrays. Knorr departed from Woods Hole, Massachusetts on April 10, 2012 and steamed south to the location of the mooring deployments on the shelf break. Over five days, April 10-15, Knorr surveyed the bottom at the planned mooring sites, recovered the moorings, and carried out preliminary investigations of mechanical and electrical functionality on the recovered moorings and mooring hardware, including observations of biofouling and corrosion. Knorr returned to Woods Hole on April 15, 2012.Funding was provided by the National Science Foundation contract #SA9-10 through the Consortium for Ocean Leadershi

    Planktonic foraminiferal assemblages reflect warming during two recent mid-latitude marine heatwaves

    Get PDF
    Under future climate scenarios, ocean temperatures that are presently extreme and qualify as marine heatwaves (MHW) are forecasted to increase in frequency and intensity, but little is known about the impact of these events on one of the most common paleoproxies, planktonic foraminifera. Planktonic foraminifera are globally ubiquitous, shelled marine protists. Their abundances and geochemistry vary with ocean conditions and fossil specimens are commonly used to reconstruct ancient ocean conditions. Planktonic foraminiferal assemblages are known to vary globally with sea surface temperature, primary productivity, and other hydrographic conditions, but have not been studied in the context of mid-latitude MHWs. For this study, the community composition and abundance of planktonic foraminifera were quantified for 2010-2019 along the Newport Hydrographic Line, a long-term monitoring transect at 44.6°N in the Northern California Current (NCC). Samples were obtained from archived plankton tows spanning 46 to 370 km offshore during annual autumn (August – October) cruises. Two MHWs impacted the region during this timeframe: the first during 2014-2016 and a second, shorter duration MHW in 2019. During the 2014-2016 MHW, warm water subtropical and tropical foraminifera species were more prevalent than the typical polar, subpolar, and transitional species common to this region. Cold water species were abundant again after the first MHW dissipated in late 2016. During the second, shorter-duration MHW in 2019, the assemblage consisted of a warm water assemblage but did not include tropical species. The foraminiferal assemblage variability correlated with changes in temperature and salinity in the upper 100 meters and was not correlated with distance offshore or upwelling. These results suggest that fossil foraminiferal assemblages from deep sea sediment cores may provide insight into the magnitude and frequency of past MHWs

    Better Regional Ocean Observing Through Cross-National Cooperation: A Case Study From the Northeast Pacific

    Get PDF
    The ocean knows no political borders. Ocean processes, like summertime wind-driven upwelling, stretch thousands of kilometers along the Northeast Pacific (NEP) coast. This upwelling drives marine ecosystem productivity and is modulated by weather systems and seasonal to interdecadal ocean-atmosphere variability. Major ocean currents in the NEP transport water properties such as heat, fresh water, nutrients, dissolved oxygen, pCO2, and pH close to the shore. The eastward North Pacific Current bifurcates offshore in the NEP, delivering open-ocean signals south into the California Current and north into the Gulf of Alaska. There is a large and growing number of NEP ocean observing elements operated by government agencies, Native American Tribes, First Nations groups, not-for-profit organizations, and private entities. Observing elements include moored and mobile platforms, shipboard repeat cruises, as well as land-based and estuarine stations. A wide range of multidisciplinary ocean sensors are deployed to track, for example, upwelling, downwelling, ocean productivity, harmful algal blooms, ocean acidification and hypoxia, seismic activity and tsunami wave propagation. Data delivery to shore and observatory controls are done through satellite and cell phone communication, and via seafloor cables. Remote sensing from satellites and land-based coastal radar provide broader spatial coverage, while numerical circulation and biogeochemical modeling complement ocean observing efforts. Models span from the deep ocean into the inland Salish Sea and estuaries. NEP ocean observing systems are used to understand regional processes and, together with numerical models, provide ocean forecasts. By sharing data, experiences and lessons learned, the regional ocean observatory is better than the sum of its parts
    corecore